نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی کامپیوتر، دانشکده فنی مهندسی، دانشگاه ملایر، ملایر، ایران

2 گروه ریاضی، دانشگاه فنی و حرفه ای تهران

چکیده

عملیات آزمون نرم‌افزار، به‌عنوان یکی از روش‌های اساسی برای ارزیابی کیفیت محصولات نرم‌افزاری، از مراحل مختلف توسعه و نگهداری نرم‌افزار بهره می‌برد. با افزایش پیچیدگی و گستردگی نرم‌افزارها، نیازمندی به روش‌های آزمون کارآمد و موثر با تعادل مناسب بین کاهش زمان و افزایش دقت احساس می‌شود. در این مطالعه، روش‌های خودکار آزمون نرم‌افزار با استفاده از الگوریتم‌های بهینه‌سازی مبتنی بر جغرافیای زیستی و ترکیب آن با الگوریتم خفاش مورد بررسی قرار گرفته و آرایه پوششی با کارایی بالا تولید شده است. این نوآوری‌ها، به علاوه استفاده از ساختارهای داده بهینه، نه تنها به مدیریت پیچیدگی نرم‌افزار کمک کرده‌اند، بلکه نیازمندی‌های موفقیت پروژه‌های نرم‌افزاری را نیز مدنظر قرار داده‌اند. این پژوهش به منظور ارتقای کیفیت محصولات نرم‌افزاری، توصیه می‌شود و به تولید آرایه‌های پوشش با بهره‌وری بالا و افزایش کارایی آزمون‌های نرم‌افزار می‌پردازد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A Novel Approach to Enhancing Defense: Metaheuristic Algorithms for Optimal Structuring of Covering Arrays and Efficient Test Suite Generation

نویسندگان [English]

  • sajad esfandyari 1
  • davar giveki 1
  • Mohammad Farokhzadi 2

1 Department of Computer Engineering, Faculty of Engineering, Malayer University, Malayer, Iran

2 Department of Mathmatics, Technical and Vocational University (TVU), Tehran, Iran

چکیده [English]

Software testing operations, as one of the fundamental methods for evaluating the quality of software products, are employed throughout various stages of software development and maintenance. With the increasing complexity and ubiquity of software, the need for performance and efficiency testing methods with a suitable balance between reducing time and increasing accuracy is felt.

In this study, automated software testing methods using Biogeography-Based Optimization algorithms, coupled with the bat algorithm, have been investigated, resulting in the production of a high-performance covering array. These innovations, along with the utilization of optimized data structures, have not only aided in managing software complexity but also addressed the success requirements of software projects. This research is recommended for enhancing the quality of software products, focusing on producing covering arrays with high efficiency and improving the performance of software testing.

کلیدواژه‌ها [English]

  • Metaheuristic algorithm
  • software testing
  • covering array
[1]
S. Esfandyari and V. Rafe, "A Hybrid solution for Software testing to minimum test suite generation using hill climbing and bat search algorithms," Tabriz Journal of Electrical Engineering, vol. 46, no. 3, pp. 25-35, 2016.
[2]
S. Esfandyari and V. Rafe, "Extracting Combinatorial Test parameters and their values using model checking and evolutionary algorithms," Applied Soft Computing, vol. 91, pp. 1-19, 2020.
[3]
S. Esfandyari and V. Rafe, "GALP: a hybrid artificial intelligence algorithm for generating covering array," soft computing, vol. 25, p. 7673–7689, 2021.
[4]
M. K.-N. Einollah Pira, "Combinatorial t-way test suite generation using an improved asexual reproduction optimization algorithm," Applied Soft Computing, vol. 150, 2024.
[5]
D. Simon, "Biogeography-based optimization," IEEE Transactions on Evolutionary Computation, vol. 12, no. 6, pp. 702-713, 2008.
[6]
A. A. Muazu, A. S. Hashim and A. Sarlan, "Review of Nature Inspired Metaheuristic Algorithm Selection for Combinatorial t-Way Testing," IEEE Access, vol. 10, pp. 27404 - 27431, 2022.
[7]
E. Pira, V. Rafe and S. Esfandyari, "Minimum Covering Array Generation Using Success-History and Linear Population Size Reduction based Adaptive Differential Evolution Algorithm," TABRIZ JOURNAL OF ELECTRICAL ENGINEERING, vol. 52, no. 2, pp. 77-89, 2022.
[8]
E. Pira, V. Rafe and S. Esfandyari, "A three-phase approach to improve the functionality of t-way strategy," Soft Computing, pp. 1-21, 2023.
[9]
S. Esfandyari and V. Rafe, "Using the Particle Swarm Optimization Algorithm to Generate the Minimum Test Suite in Covering Array with Uniform Strength," Soft Computing Journal, vol. 8, no. 2, pp. 66-79, 2021.
[10]
S. Esfandyari and V. Rafe, "Correction to: GALP: a hybrid artificial intelligence algorithm for generating covering array," Soft Computing, 2021.
[11]
Z. Abbasi, S. Esfandyari and V. Rafe, "Covering array generation using teaching learning base optimization algorithm," Tabriz Journal of Electrical Engineering, vol. 48, no. 1, pp. 161-171, 2018.
[12]
Y. Lei, R. Kacker, D. R. Kuhn, V. Okun and J. Lawrence, "IPOG: a general strategy for t-way software testing," in 4th Annual IEEE International Conference and Workshops on the Engineering of Computer-Based Systems, IEEE Computer Society, Tucson, AZ, 2007.
[13]
Y. Lei, R. Kacker, D. R. Kuhn, V. Okun and J. Lawrence, "IPOG/IPOG-D: efficient test generation for multi-way combinatorial testing, Software Testing," Software Testing, Verification & Reliability, vol. 18, no. 3, pp. 125-148, 2008.
[14]
A. Hartman, "IBM Intelligent Test Case Handler," IBM alphaworks, 2023. [Online]. Available: http://www.alphaworks.ibm.com/tech/whitch.
[15]
B. Jenkins, "Jenny download web page," Bob Jenkins’ Website, 2023. [Online]. Available: http://burtleburtle.net/bob/math/jenny.html.
[16]
J. Arshem, "TVG download page," 2023. [Online]. Available: http://sourceforge.net/projects/tvg.
[17]
K. Z. Zamli, M. F. J. Klaib, M. I. Younis, N. A. M. Isa and R. Abdullah, "Design and implementation of a t-way test data generation strategy with automated execution tool support," Information Sciences, vol. 181, no. 9, pp. 1741-1758, 2011.
[18]
D. M. Cohen, S. R. Dalal, M. L. Fredman and G. C. Patton, "The AETG system: an approach to testing based on combinatorial design," IEEE Transactions on Software Engineering, vol. 23, no. 7, pp. 437 - 444, 1997.
[19]
S. S. V. R. S. E. Leila Yousofvand, "Automatic program bug fixing by focusing on finding the shortest sequence of changes," Artificial Intelligence Review, vol. 57, no. 2, p. 39, 2024.
[20]
J. Stardom, "Metaheuristics and the Search for Covering and Packing Array," Thesis (M.Sc.), Simon Fraser University, 2001, 2001.
[21]
M. B. Cohen, "Designing Test Suites for Software Interactions Testing," PHD Thesis, University of Auckland,Department of Computer Science ,Auckland,, 2004.
[22]
B. S. Ahmed, K. Z. Zamli and C. P. Lim, "Application of Particle Swarm Optimization to uniform and variable strength covering array construction," Applied Soft Computing, vol. 12, no. 4, p. 1330–1347, 2012.
[23]
H. Wu, C. Nie, F.-C. Kuo, H. Leung and C. J. Colbourn, "A Discrete Particle Swarm Optimization for Covering Array Generation," IEEE Transactions on Evolutionary Computation, vol. 19, no. 4, pp. 575-591, 2015.
[24]
K. Z. Zamli, B. S. Ahmed, T. Mahmoud and W. Afzal, "Fuzzy Adaptive Tuning of a Particle Swarm Optimization Algorithm for Variable-Strength Combinatorial Test Suite Generation," in Swarm Intelligence, vol. 3, Y. Tan, Ed., IET, 2018.
[25]
B. S. Ahmed, T. Sh. Abdulsamad and M. Y. Potrus, "Achievement of minimized combinatorial test suite for configuration-aware software functional testing using the Cuckoo Search algorithm," Information and Software Technology, vol. 66, p. 13–29, 2015.
[26]
K. Z. Zamli, B. Y. Alkazemi and G. Kendall, "A Tabu Search hyper-heuristic strategy for t-way test suite generation," vol. 44, pp. 57-74, 2016.
[27]
A. R. A. Alsewari and K. Z. Zamli, "Design and implementation of a harmony-search-based variable-strengtht-way testing strategy with constraints support," Information and Software Technology, vol. 54, no. 6, p. 553–568, 2012.
[28]
Amirzdeh, M., Hosseini Moradi, S. A., & Ghobadi, N. (2023). Real Time Detection of Multi-Rotor Unmanned Aerial Vehicle Using YOLOv5 Optimized Algorithm. Journal of Advanced Defense Science & Technology, 14(1), 11-22.‏
[29]
S. Esfandyari and V. Rafe, "A tuned version of genetic algorithm for efficient test suite generation in interactive t-way testing strategy," Information and Software Technology, vol. 94, pp. 165-185, 2018.