[1] Tabatabaeinejad, S. M., Amiri, O., Ghanbari, M., & Salavati-Niasari, M. (2021). Dy2Cu2O5 nanostructures: Sonochemical fabrication, characterization, and investigation of photocatalytic ability for elimination of organic contaminants. Journal of Molecular Liquids, 117883.
[2] Yulizar, Y., Apriandanu, D. O. B., & Ashna, R. I. (2020). La2CuO4-decorated ZnO nanoparticles with improved photocatalytic activity for malachite green degradation. Chemical Physics Letters, 755, 137749.
[3] Zhang, Z., Chen, X., Zhang, X., Lin, H., Lin, H., Zhou, Y., & Wang, X. (2013). Synthesis of Cu2O/La2CuO4 nanocomposite as an effective heterostructure photocatalyst for H2 production. Catalysis Communications, 36, 20-24.
[4] Bie, C., Yu, H., Cheng, B., Ho, W., Fan, J., & Yu, J. (2021). Design, fabrication, and mechanism of nitrogen‐doped graphene‐based photocatalyst. Advanced Materials, 33(9), 2003521.
[5] Sukumar, M., Kennedy, L. J., Vijaya, J. J., Al-Najar, B., Bououdina, M., & Mudhana, G. (2019). Structural, optical, and magnetic properties of Ca2+ doped La2CuO4 perovskite nanoparticles. Vacuum, 167, 407-415.
[6] Asiri, A. M., Adeosun, W. A., & Rahman, M. M. (2020). Development of highly efficient non-enzymatic nitrite sensor using La2CuO4 nanoparticles. Microchemical Journal, 159, 105527.
[7] Sukumar, M., Kennedy, L. J., Vijaya, J. J., Al-Najar, B., & Bououdina, M. (2018). Structural, magnetic and catalytic properties of La2-xBaxCuO4 (0≤ x≤ 0.5) perovskite nanoparticles. Ceramics International, 44(15), 18113-18122.
[8] Shanavas, S., Priyadharsan, A., Vasanthakumar, V., Arunkumar, A., Anbarasan, P. M., & Bharathkumar, S. (2017). Mechanistic investigation of visible light driven novel La2CuO4/CeO2/rGO ternary hybrid nanocomposites for enhanced photocatalytic performance and antibacterial activity. Journal of Photochemistry and Photobiology A: Chemistry, 340, 96-108.
[9] Tabatabaeinejad, S. M., Zinatloo-Ajabshir, S., Amiri, O., & Salavati-Niasari, M. (2021). Magnetic Lu2Cu2O5-based ceramic nanostructured materials fabricated by a simple and green approach for an effective photocatalytic degradation of organic contamination. RSC Advances, 11(63), 40100-40111.
[10] Yulizar, Y., Apriandanu, D. O. B., & Ashna, R. I. (2020). La2CuO4-decorated ZnO nanoparticles with improved photocatalytic activity for malachite green degradation. Chemical Physics Letters, 755, 137749.
[11] Talebzadeh, Z., Masjedi-Arani, M., Amiri, O., & Salavati-Niasari, M. (2021). Green sonochemistry fabrication of pure Gd2Sn2O7 nanoparticles with advanced photocatalytic efficiency for elimination of dye pollutions. International Journal of Hydrogen Energy.
[12] Talebzadeh, Z., Masjedi-Arani, M., Amiri, O., & Salavati-Niasari, M. (2021). La2Sn2O7/g-C3N4 nanocomposites: Rapid and green sonochemical fabrication and photo-degradation performance for removal of dye contaminations. Ultrasonics Sonochemistry, 77, 105678.
[13] Mahdavi, K., Zinatloo-Ajabshir, S., Yousif, Q. A., & Salavati-Niasari, M. (2021). Enhanced photocatalytic degradation of toxic contaminants using Dy2O3-SiO2 ceramic nanostructured materials fabricated by a new, simple and rapid sonochemical approach. Ultrasonics Sonochemistry, 105892.
[14] Mahdavi, K., Salavati-Niasari, M., Amiri, O., & Ghanbari, M. (2022). Synthesis of La9. 33Si6O26 nano-photocatalysts by ultrasonically accelerated method for comparing water treatment efficiency with changing conditions. Arabian Journal of Chemistry, 15(1), 103481.
[15]Moradi, Seyed Ali Hosseini, Nader Ghobadi, and Seyed Milad Tabatabaeinejad. "Facile and rapid preparation of progressive ZnO/NiO/rGO nano-photocatalyst and investigation its mechanism and reaction kinetics while decomposition of pharmaceuticals pollutant." Surfaces and Interfaces 39 (2023): 102939.
[16] Hosseini Moradi, S. A., & Amirzadeh, M. (2024). Removal of acidic dye by electrochemical method using polymeric nanofiber containing reduced graphene oxide nanoparticles and catalyst. Journal of Color Science and Technology, 17(4), 287-301.