نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی و پرواز، دانشگاه افسری امام علی، تهران، ایران

2 گروه مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

3 دانشکده مهندسی پرواز، دانشگاه افسری امام علی، تهران، ایران

چکیده

امنیت و بقاپذیری سازه‌های دفاعی در برابر بارهای دینامیکی شدید مانند موج انفجار و ضربه، یک اولویت اساسی در طراحی‌های نوین است. پانل‌های ساندویچی به دلیل نسبت استثنایی استحکام به وزن و ظرفیت بالای جذب انرژی، به عنوان یکی از گزینه‌های اصلی در این حوزه مطرح هستند. این پژوهش به بررسی و مقایسه تأثیر دو نوع هسته پرکاربرد، یعنی هسته متخلخل و هسته ویسکوالاستیک بر فرکانس‌های طبیعی سازه (تیر) ساندویچی می‌پردازد. هدف اصلی این مطالعه، ارزیابی پتانسیل این هسته‌ها در افزایش استحکام و ایمنی سازه‌های دفاعی از طریق تحلیل رفتار ارتعاشی آن‌ها است. پژوهش حاضر از مدل‌سازی ‌تحلیلی برای انجام تحلیل و بررسی فرکانس‌های طبیعی استفاده می‌کند، بطوریکه با استفاده از تئوری سه لایه تیر ساندویچی و به کمک اصل همیلتون معادلات حاکم بر سیستم بدست می‌آیند. معادلات به‌دست آمده به صورت معادلات دیفرانسیل پیچیده با مشتقات جزئی می‌باشند که برای حل این معادلات تعادل، از روش‌ نیمه‌تحلیلی ناویر در حوزه‌ی مکان استفاده شده است. به ﻣﻨﻈﻮر ﺑﺮرﺳﻲ ﺻﺤﺖ و دﻗﺖ ﻧﺘﺎﻳﺞ به‌دست آمده، ﻣﻘﺎﻳﺴﻪای ﺑﺎ ﺟﻮاب‌های ﻣﻮﺟﻮد ﺑﺮای ﺣﺎﻻت ﺧﺎص ارائه گردیده است. در انتها تاثیر پارامترهای مختلف همچون درصد حجمی نانو لوله کربنی، ضریب تخلخل، الگوی توزیع تخلخل، نسبت پارامترهای هندسی و ابعادی بر روی فرکانس‌های طبیعی سازه ساندویچی با هسته متخلخل و ویسکوالاستیک و رویه‌های نانوکامپوزیتی بررسی شده است. از جمله نتایج مهم حاصل از این تحقیق این است که در بیشتر مواقع، هسته ویسکوالاستیک دارای فرکانس طبیعی و استحکام بیشتری نسبت به هسته متخلخل می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation and Comparison of Porous Core and Viscoelastic Core on the Natural Frequencies of Sandwich Structures Aiming to Enhance the Strength and Safety of Defensive Structures

نویسندگان [English]

  • Aliasghar Naderi 1
  • Hadi Teymouri 2
  • Mehdi Pourseifi 3

1 Faculty of Engineering and Aviation, Imam Ali Officer University, Tehran, Iran

2 Department of Mechanical Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran

3 Faculty of Engineering and Aviation, Imam Ali Officer University, Tehran, Iran

چکیده [English]

The security and survivability of defensive structures against extreme dynamic loads such as blast waves and impacts is a fundamental priority in modern design. Sandwich panels, due to their exceptional strength-to-weight ratio and high energy absorption capacity, are among the primary candidate materials in this field. This research investigates and compares the influence of two widely used core types the porous core and the viscoelastic core on the natural frequencies of a sandwich beam structure. The main objective of this study is to assess the potential of these cores to enhance the strength and safety of defensive structures through the analysis of their vibrational behavior. The present research employs analytical modeling to perform the natural frequency analysis. Using three-layer sandwich beam theory and applying Hamilton's principle, the governing equations of the system are derived. The resulting equations are complex partial differential equations (PDEs). To solve these equilibrium equations, the semi-analytical Navier method is utilized in the spatial domain. To validate the accuracy of the obtained results, comparisons are made with existing solutions for specific cases. Finally, the influence of various parameters such as carbon nanotube volume fraction, porosity coefficient, porosity distribution pattern, geometric and dimensional ratios on the natural frequencies of the sandwich structure is examined. This investigation covers structures with both porous and viscoelastic cores and nanocomposite face sheets. A key finding of this research is that, in most instances, the viscoelastic core exhibits higher natural frequencies and greater strength compared to the porous core.

کلیدواژه‌ها [English]

  • Natural frequency
  • Porous core
  • Viscoelastic core
  • sandwich beam
  • Hamilton'
  • s principle
[1]. Teymouri H, Biglari H. Elastodynamic Green's functions for sandwich panels with aluminum foam core and transversely isotropic face sheets using potential functions method. Engineering Analysis with Boundary Elements. 2024, 160, 258-272.
[2]. Reddy JN. Mechanics of laminated composite plates and shells: theory and analysis. CRC press. 2004.
[3]. Yang J, Chen Y, Xiang Y, Jia X. Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load. Journal of Sound and Vibration. 2008, 312(1), 166-181.
[4]. Rahnama M, Morad Sheikhi M, Hamzeloo SR. Free vibration behavior of three-skin conical shells with composite lattice core based on semi-analytical and finite element methods. Aerospace Mechanics. 2024, 20(3), 75-86, (In Persian).
[5]. Şimşek M, Kocatürk T. Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. Composite Structures. 2009, 90(4), 465-473.
[6]. Safaei B, Onyibo EC, Goren M, Kotrasova K, Yang Z, Arman S, Asmael M. Free vibration investigation on RVE of proposed honeycomb sandwich beam and material selection optimization. Facta Universitatis, Series: Mechanical Engineering. 2023, 21(1), 31-50.
[7]. Belkhodja MEA, Chorfi SM, Belalia SA, Belkhodja Y. Bending and free vibrations analysis of sandwich beams with porous functionally graded face sheets and a graphene platelets-reinforced aluminum core using a new quasi-3D beam theory. Journal of Vibration Engineering & Technologies. 2025, 13(1), 122.
[8]. Dzenis Y. Structural nanocomposites. Science. 2008, 319(5862), 419-420.
[9]. Ke L-L, Yang J, Kitipornchai S. Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Composite Structures. 2010, 92(3), 676-683.
[10]. Ebrahimi F, Dabbagh A, Rastgoo A. Free vibration analysis of multi-scale hybrid nanocomposite plates with agglomerated nanoparticles. Mechanics Based Design of Structures and Machines. 2021, 49(4), 487-510.
[11]. Zandi-Baghche-Maryam A, Hosseini M. Analytical Analysis for Free Vibration of Different Arrangements of BNNTs under Initially Stress. Aerospace Mechanics. 2019, 15(3), 33-46, (In Persian).
[12]. Heshmati M, Yas MH. Dynamic analysis of functionally graded multi-walled carbon nanotube-polystyrene nanocomposite beams subjected to multi-moving loads. Materials and Design. 2013, 49, 894–904.
[13]. Tahami FV, Biglari H, Raminnea M. Optimum design of FGX-CNT-reinforced reddy pipes conveying fluid subjected to moving load. Journal of Applied and Computational Mechanics. 2016,  2(4), 243–253.
[14]. Kitipornchai S, Chen D, Yang J. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Materials and Design. 2017, 116, 656–665.
[15]. Mirjavadi SS, Afshari BM, Barati MR, Hamouda AMS. Transient response of porous inhomogeneous nanobeams due to various impulsive loads based on nonlocal strain gradient elasticity. International Journal of Mechanics and Materials in Design. 2020, 16(1), 57–68.
[16]. Li Y, Yao W, Wang T. Free flexural vibration of thin-walled honeycomb sandwich cylindrical shells. Thin-Walled Structures. 2020, 157, 107032.
[17]. Lakes R. Viscoelastic materials. Cambridge university press. 2009.
[18]. Meunier M, Shenoi RA. Dynamic analysis of composite sandwich plates with damping modelled using high-order shear deformation theory. Composite Structures. 2001, 54(2-3), 243-454.
[19]. Won SG, Bae SH, Cho JR, Bae SR, Jeong WB. Three-layered damped beam element for forced vibration analysis of symmetric sandwich structures with a viscoelastic core. Finite Elements in Analysis and Design. 2013, 68, 39-51.
[20]. Teymouri H, Biglari H, Sadeghi MH. Effects of Frequency Dependency of Materials Behavior on the Dynamic Response of the Viscoelastic Beam Under the Moving Mass. International Journal of Structural Stability and Dynamics. 2025, 2650266.
[21]. Ghorbanpour Arani A, Haghparast E, Ghorbanpour Arani AH. Size‐dependent vibration of double‐bonded carbon nanotube‐reinforced composite microtubes conveying fluid under longitudinal magnetic field. Polymer Composites. 2016, 37(5), 1375-1383.
[22]. Frostig Y, Baruch M, Vilnay O, Sheinman I. High-order theory for sandwich-beam behavior with transversely flexible core. Journal of Engineering Mechanics. 1992, 118(5), 1026-1043.
[23]. Ke LL, Yang J, Kitipornchai S. Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Composite Structures. 2010, 92(3), 676-683.
[24]. Mohammadimehr M, Okhravi SV, Akhavan Alavi SM. Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT. Journal of Vibration and Control. 2018, 24(8), 1551-1569.
[25]. Biglari H, Teymouri H, Shokouhi A. Dynamic Response of Sandwich Beam with Flexible Porous Core Under Moving Mass. Mechanics of Composite Materials. 2024, 60(1), 163-182.
[26]. Yang M, Qiao P. Higher-order impact modeling of sandwich structures with flexible core. International Journal of Solids and Structures. 2005, 42, 5460-5490.
[27]. Bilasse M, Daya EM, Azrar L. Linear and nonlinear vibrations analysis of viscoelastic sandwich beams. Journal of Sound and Vibration. 2010, 329(23), 4950-4969.
[28]. Amirzdeh, M., Hosseini Moradi, S. A., ghobadi, N. Real Time Detection of Multi-Rotor Unmanned Aerial Vehicle Using YOLOv5 Optimized Algorithm. Journal of Advanced Defense Science & Technology, 2023; 14(1): 11-22
[29]. Sepehri, M., abbasi, M. Reinforcement of structures against explosion by providing suitable structural shape and determining the type of the optimal fibers in concrete mix. Aerospace Defense, 2025; 4(1): 1-21.