نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی برق، دانشگاه پدافند هوایی خاتم الانبیاء(ص)، تهران، ایران

2 استادیار برق، دانشکده مهندسی برق، دانشگاه پدافند هوایی خاتم‌الانبیاء(ص)، تهران، ایران

چکیده

در این مقاله بهبود تفکیک‌پذیری SAR با استفاده از یک فیلتر منطبق بر پایه FrFT مورد بررسی قرار گرفته است که فیلتر منطبق بر شیب نامیده شده است. معمولاً سیگنال دریافتی از اهداف توسط SAR با استفاده از الگوریتم‌هائی همچون RDA و CSA مورد پردازش قرار گرفته و تصویر نهائی استخراج می‌شود. یکی از مهمترین بخش‌های این الگوریتم‌ها، پیاده‌سازی یک فیلتر منطبق است که موجب فشرده‌سازی سیگنال دریافتی در راستای برد و در راستای سمت شده و منجر به مکان‌یابی و تفکیک‌پذیری بالای SAR خواهد شد. با توجه به اینکه شکل موج ارسالی اغلب رادار‌های SAR از نوع LFM می‌باشد، بنابراین اکوی برگشتی از اهداف در راستای برد یک سیگنال LFM می‌باشد. از طرفی در رادار SAR، در راستای سمت همیشه یک سیگنال چیرپ ایجاد می‌شود. در نتیجه در این مقاله فشرده‌سازی سیگنال با استفاده از فیلتر منطبق بر شیب بطور خاص روی سیگنال سمت انجام شده است و بدیهی است می‌توان همین روش را روی سیگنال LFM در راستای برد نیز تعمیم داد. نتایج بدست آمده نشان می‌دهند که روش پیشنهادی مبتنی بر تبدیل FrFT در حوزۀ زمان - فرکانس برای پیاده‌سازی یک فیلتر منطبق نسبت به روش کلاسیک، هم تفکیک‌پذیری را بهبود داده و هم سطح گلبرگ‌های فرعی در آشکارسازی دو هدف نقطه‌ای کاهش داده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

An improved synthetic aperture radar cross-range resolution method based on Matched Slope Filter

نویسندگان [English]

  • Farhad Sadeghi 1
  • majid zarie 2

1 - Electrical Engineering Department, khatam al-anbia (pbuh) University, Tehran, Iran

2 Electrical Engineering Department, khatam al-anbia (pbuh) University

چکیده [English]

This article aims at the improvement of Synthetic Aperture Radar (SAR) resolution by using a Matched Filter (MF) based on the Fractional Fourier Transform (FrFT) that has been called a Matched Slope Filter (MSF). Generally, the received SAR signals are processed by well-known algorithms to extract the final image, such as the Chirp Scaling Algorithm (CSA) and the Range Doppler Algorithm (RDA). Implementing a Matched Filter (MF) that aims at compressing the received signal in the range and azimuth directions is a principal part of these algorithms to deliver target positioning and high resolution. Because the transmitted signal by SARs has often been Linear Frequency Modulated (LFM), the received echo from the targets in the range direction is the LFM. On the other hand, there is always a chirp signal in the azimuth orientation. Thus, this paper proposes the Matched on Slope Filter to improve the compression of the azimuth signals. It's clear the proposed method has been adopted for LFM signal compression in the range direction also. The evaluation results show that our method that uses the FrFT in the time-frequency domain for implementing a Matched Slope Filter enhances the resultant azimuth resolution and reduces the sidelobe level compared to the other frequency-based method.

کلیدواژه‌ها [English]

  • Cross range Resolution
  • SAR
  • Matched on Slope Filter
  • Signal compression
  • FrFT
[1] S.-T. M. Mazruei M, “A New Algorithm for Detection of Vegetation and Shadow Regions in High Resolution Aerial/Satellite Images Based on Principal Component Analysis. Journal of Iranian Association of Electrical and Electronics Engineers. 2018; 15 (2) :25-43,” Journal of Iranian Association of Electrical and Electronics Engineers., vol. 15, no. 2, pp. 25–43, 2018.
[2]            M. Soumekh, Synthetic Aperture Radar Signal Processing With Matlab Algorithms. 1999.
[3]            I. G. Cumming and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data Algorithms and Implementations. 2005.
[4]            N. Levanon and E. Mozeson, Radar Signals. 2004.
[5]            A. Noroozi, M. A. Sebt, A. H. Oveis, R. Amiri, and M. M. Nayebi, “Improved Algebraic Solution for Elliptic Localization in Distributed MIMO Radar,” Journal of Iranian Association of Electrical and Electronics Engineers, vol. 17, no. 4, pp. 37–44, Dec. 2020.
[6]            W. Fan, M. Zhang, J. Li, and P. Wei, “Modified Range-Doppler Algorithm for High Squint SAR Echo Processing,” IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 3, pp. 422–426, 2019.
[7]            V. Namias, “The fractional order fourier transform and its application to quantum mechanics,” IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), vol. 25, no. 3, pp. 241–265, 1980.
[8]            Y. Zhang et al., “A comprehensive survey on fractional fourier transform,” Fundamenta Informaticae, vol. 151, no. 1–4, pp. 1–48, 2017.
[9]            E. Sejdić, I. Djurović, and L. Stanković, “Fractional Fourier transform as a signal processing tool: An overview of recent developments,” Signal Processing, vol. 91, no. 6, pp. 1351–1369, 2011.
[10] M. Jinming, M. Hongxia, S. Xinhua, G. Chang, K. Xuejing, and T. Ran, “Research progress in theories and applications of the fractional Fourier transform,” vol. 1, no. 61331021, pp. 1–24, 2018.
[11] S. A. Elgamel, C. Clemente, and J. J. Soraghan, “Radar matched filtering using the fractional fourier transform,” in Sensor Signal Processing for Defence (SSPD 2010), 2010, pp. 23–23.
[12] A. S. Amein and J. J. Soraghan, “Azimuth fractional transformation of the Fractional Chirp Scaling Algorithm (FrCSA),” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 10, pp. 2871–2879, 2006.
[13] C. Clemente and J. J. Soraghan, “Fractional Range Doppler Algorithm for SAR Imaging,” Proceedings of the 7th European Radar Conference, no. October, pp. 248–251, 2010.
[14] M. G. El-Mashed, O. Zahran, M. I. Dessouky, M. El-Kordy, and F. E. Abd El-Samie, “Synthetic aperture radar imaging with fractional Fourier transform and channel equalization,” Digital Signal Processing: A Review Journal, vol. 23, no. 1, pp. 151–175, 2013.
[15] S. Chen, S. Zhang, H. Zhao, and Y. Chen, “A New Chirp Scaling Algorithm for Highly Squinted Missile-Borne SAR Based on FrFT,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 8, 2015.
[16] Y. G. and X. L. Qianrong Lu, “A Novel Compensation Approach for the Range-Dependent Motion Error based on Time Scaling,” pp. 6715–6718, 2018.
[17] L. Dong, L. Huan, L. Hongqing, L. Guisheng, and T. Xiaoheng, “Focus Improvement for High-Resolution Highly Squinted SAR Imaging Based on 2-D Spatial-Variant Linear and Quadratic RCMs Correction and Azimuth-Dependent Doppler Equalization,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 1, pp. 168–183, 2017.
[18] Z. Ding, L. Liu, T. Zeng, W. Yang, and T. Long, “Improved Motion Compensation Approach for Squint Airborne SAR,” vol. 51, no. 8, pp. 4378–4387, 2013.
[19] O. Akay and G. F. Boudreaux-Bartels, “Fractional convolution and correlation via operator methods and an application to detection of linear FM signals,” IEEE Transactions on Signal Processing, vol. 49, no. 5, pp. 979–993, 2001.
[20] A. Bultheel, “A two-phase implementation of the fractional Fourier transform Katholieke Universiteit Leuven Department of Computer Science A two-phase implementation of the fractional Fourier transform,” no. March, 2011.
[21] D. Li et al., “A Fast Cross-Range Scaling Algorithm for ISAR Images Based on the 2-D Discrete Wavelet Transform and Pseudopolar Fourier Transform,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 7, pp. 4231–4245, 2019.
[22] W. Yu, W. Su, H. Gu, J. Yang, and X. Lu, “Fast implementation of ground maneuvering target focusing,” Digital Signal Processing: A Review Journal, vol. 89, pp. 155–169, 2019.
[23] Y. Yang, Z. Peng, W. Zhang, and G. Meng, “Parameterised time-frequency analysis methods and their engineering applications: A review of recent advances,” Mechanical Systems and Signal Processing, vol. 119, pp. 182–221, 2019.
[24] C. Capus and K. Brown, “Short-time fractional Fourier methods for the time-frequency representation of chirp signals,” The Journal of the Acoustical Society of America, vol. 113, no. 6, p. 3253, 2003.
[25] K. K. Sinha, “The Fractional Fourier Transform in Signal Processing,” International Journal of Scientific and Research Publications, vol. 3, no. 2, pp. 1–3, 2013.
[26] A. Akhavan, A. Mahloojifar, and S. Hashemi-Berenjabad, “Axial resolution and robustness improvement in coded excitation ultrasound images using fractional fourier transform,” Proceedings - 4th International Conference on Developments in eSystems Engineering, DeSE 2011, pp. 68–73, 2011.