نوع مقاله : مقاله پژوهشی
نویسندگان
1 استادیار
2 دانشگاه صنعتی مالک اشتر، اصفهان، ایران
3 مجتمع مکانیک دانشگاه صنعتی مالک اشتر، اصفهان، ایران
چکیده
این پژوهش به تحلیل و بررسی عملکرد حرارتی سیستم خنککننده یک پمپ موتور محصور میپردازد. با توجه به محدودیتهای دمایی تعیین شده در استاندارد IEC برای عایق سیمپیچ، که تجاوز از آن موجب تخریب عایق و اختلال در عملکرد موتور میشود، نقش حیاتی سیستم خنککننده بیش از پیش آشکار میگردد. در این میان، واترجکت به عنوان جزء اصلی سیستم خنککننده، دو عملکرد اساسی بر عهده دارد: خنککاری پوسته موتور و خنکسازی جریان سیال عبوری از داخل موتور. به منظور کاهش پیچیدگی محاسبات، پوسته موتور با در نظر گرفتن شرایط مرزی حرارتی مناسب مدلسازی شده و اثر واترجکت در دبیهای kg/s5/0 و 3/0 و 1/0 و جریان کویل در دبیهای kg/s 15/0 و 1/0 و 05/0با قطرهای مختلف مورد تحلیل قرار گرفته است. حرارت تولیدشده در اجزای مختلف موتور به صورت شار حرارتی بر سطح داخلی پوسته اعمال گردیده است. نتایج تحقیق نشان میدهد که با افزایش دبی واترجکت، مقادیر دمای پوسته و دمای سیال خروجی کویل روند کاهشی مشخصی دارند. در مقابل، افزایش دبی کویل موجب افزایش دمای خروجی کویل میشود. همچنین استفاده از مخلوط آب و ضدیخ در مقایسه با آب خالص، منجر به افزایش دمای پوسته میگردد. کمترین دمای پوسته در شرایط دبی کویل kg/s 05/0 و دبی واترجکت kg/s5/0 حاصل شده است. از جنبه هیدرودینامیکی، مقادیر افت فشار با افزایش دبی واترجکت، روند صعودی نشان میدهد.
کلیدواژهها
عنوان مقاله [English]
Numerical Analysis of the Waterjacket Parameters' Effect on the Cooling of a Canned Motor Pump
نویسندگان [English]
- Jalil Fereidooni 1
- mahmoud adami 2
- abbas mohammadian 3
1 دانشگاه صنعتی مالک اشتر
2 Malek-e Ashtar, Isfahan, Iran
3 Department of Mechanical Engineering, University of Malek-e Ashtar, Isfahan, Iran
چکیده [English]
This study focuses on the thermal analysis of the cooling system for a specific type of enclosed motor pump. According to the IEC standard, the winding insulation has a specific temperature tolerance; exceeding this limit can damage the insulation and impair motor function. A crucial component of the motor's cooling system is the waterjacket, which serves two purposes: cooling the motor housing and cooling the flow passing through the motor interior. Reducing the motor housing temperature ultimately lowers the winding temperature. To simplify calculations, a thermal analysis of the enclosed motor housing was performed, considering temperature and thermal boundary conditions. The effect of the waterjacket at various flow rates 0.1, 0.3, and 0.5 kg/s and the coil flow at flow rates of 0.05, 0.1, and 0.15 kg/s, along with different diameters, were investigated to determine temperature and pressure drop. The heat generated in different motor components was applied as a heat flux on the inner surface of the motor housing. The results show that increasing the waterjacket flow rate consistently reduces the housing temperature and the coil outlet fluid temperature. Conversely, increasing the coil flow rate increases the coil outlet temperature. Using a water-antifreeze mixture compared to pure water slightly increases the minimum housing temperature. The minimum housing temperature consistently occurs at a coil flow rate of 0.05 kg/s and a waterjacket flow rate of 0.5 kg/s. The pressure drop always increases with increasing waterjaket flow rate
کلیدواژهها [English]
- Canned pump
- Waterjacket
- Thermal analysis
- CFD
- Magar SM, Gugliani GK, Navthar RR. Experimental Heat Transfer Analysis of Helical Coiled Tubes on the Basis of Variation in Curvature Ratio and Geometry. Journal of Heat and Mass Transfer Research. 2024 Jun 1;11(1):89-108.
- NAJM A, AZZAWI ID, KARIM AM. Experimental and numerical investigation of heat transfer enhancement in double coil heat exchanger. Journal of Thermal Engineering. 2024 Jan 1;10(1):62-77.
- Inyang UE, Uwa IJ. Heat transfer in helical coil heat exchanger. Advances in Chemical Engineering and Science. 2021 Dec 9;12(1):26-39.
- Maghrabie HM, Attalla M, Mohsen AA. Performance assessment of a shell and helically coiled tube heat exchanger with variable orientations utilizing different nanofluids. Applied Thermal Engineering. 2021 Jan 5;182:116013.
- Kumar A, Pandey V. CFD analysis of shell and coil heat exchanger by using different mass flow rates for hot and cold fluid. Int J Res Appl Sci Eng Technol. 2022;10(11):1592-608.
- Kowalski K, Downarowicz D. Heat transfer in helical coil heat exchanger: An experimental parametric study. Chemical and Process Engineering. 2019:101-14.
- Afzal A, AD MS, RK AR. Experimental investigation of thermal performance of engine coolant oil and water in helical coil heat exchanger. Journal of Engineering Research. 2019 Jun 2;7(2).
- Alimoradi A, Veysi F. Prediction of heat transfer coefficients of shell and coiled tube heat exchangers using numerical method and experimental validation. International journal of thermal sciences. 2016 Sep 1;107:196-208.
- Zakeralhoseini S, Sajadi B, Behabadi MA, Azarhazin S, Fazelnia H. Experimental investigation of the heat transfer coefficient and pressure drop of R1234yf during flow condensation in helically coiled tubes. International Journal of Thermal Sciences. 2020 Nov 1;157:106516.
- Xie L, Xie Y, Yu J. Phase distributions of boiling flow in helical coils in high gravity. International Journal of Heat and Mass Transfer. 2015 Jan 1;80:7-15.
- Tuncer AD, Sözen A, Khanlari A, Gürbüz EY, Variyenli Hİ. Analysis of thermal performance of an improved shell and helically coiled heat exchanger. Applied Thermal Engineering. 2021 Feb 5;184:116272.
- Yamamoto K, Yanase S, Yoshida T. Torsion effect on the flow in a helical pipe. Fluid Dynamics Research. 1994 Nov 1;14(5):259.[12]
- Karmankar RG. Enhancement of heat transfer coefficient through helical coil. International Research Journal of Engineering and Technology (IRJET). 2015;2(09):2125-9.
- Naphon P, Wongwises S. A review of flow and heat transfer characteristics in curved tubes. Renewable and sustainable energy reviews. 2006 Oct 1;10(5):463-90.
- Ali ME. Experimental investigation of natural convection from vertical helical coiled tubes. International journal of heat and mass transfer. 1994 Mar 1;37(4):665-71.
- Ghorbani N, Taherian H, Gorji M, Mirgolbabaei H. An experimental study of thermal performance of shell-and-coil heat exchangers. International Communications in Heat and Mass Transfer. 2010 Aug 1;37(7):775-81.
- Ghorbani N, Taherian H, Gorji M, Mirgolbabaei H. Experimental study of mixed convection heat transfer in vertical helically coiled tube heat exchangers. Experimental Thermal and Fluid Science. 2010 Oct 1;34(7):900-5.
- Shokouhmand H, Salimpour MR, Akhavan-Behabadi MA. Experimental investigation of shell and coiled tube heat exchangers using Wilson plots. International communications in heat and mass transfer. 2008 Jan 1;35(1):84-92.
- Lu Y, Mustafa A, Abdullah Rehan M, Razzaq S, Ali S, Shahid M, Waleed Adnan A. The effects of water friction loss calculation on the thermal field of the canned motor. Processes. 2019 May 3;7(5):256.
- Li J, Song JT, Cho YH. Thermal analysis of canned induction motor for coolant pump considering the eddy current loss in cans. InMaterials Science Forum 2011 Feb 16 (Vol. 670, pp. 466-476). Trans Tech Publications Ltd.
- Amirzdeh, M., Hosseini Moradi, S. A., ghobadi, N. Real Time Detection of Multi-Rotor Unmanned Aerial Vehicle Using YOLOv5 Optimized Algorithm. Journal of Advanced Defense Science & Technology, 2023; 14(1): 11-22..
- Chen Q, Shao H, Huang J, Sun H, Xie J. Analysis of temperature field and water cooling of outer rotor in-wheel motor for electric vehicle. IEEE Access. 2019 Sep 25;7:140142-51.