نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه بیرجند

چکیده

تخمین دقیق وضعیت و سمت پهپاد‌ها، به‌عنوان یکی از چالش‌های اصلی در سیستم‌های ناوبری خودکار، نقش حیاتی در کنترل و هدایت این وسایل ایفا می‌کند. در این مقاله، برای تخمین وضعیت پهپاد‌ها از فیلتر ذره‌ای مبتنی بر کواترنیون، یک روش نمونه‌برداری خاص و فیلتر کالمن بی‌اثر استفاده شده است. این روش‌ها با تلفیق داده‌های سنسورهای اینرسی و به‌کارگیری فیلترینگ، دقت تخمین زوایای غلت، فراز و سمت را به طور قابل‌توجهی افزایش می‌دهند. نوآوری این مقاله در مقایسه جامع عملکرد فیلتر ذره‌ای و فیلتر کالمن بی‌اثر در دو سناریوی مختلف، شامل داده‌های شبیه‌سازی‌شده و داده‌های واقعی است که از یک سیستم مرجع وضعیت و سمت خاص جمع‌آوری شده‌اند. نتایج نشان می‌دهند که فیلتر ذره‌ای در تخمین زوایای غلت و سمت بهبودی بیش از ۹۹٫۹۹٪ در داده‌های شبیه‌سازی‌شده و بیش از ۸۸٫۴۸٪ در داده‌های واقعی نشان داده است. همچنین، تحلیل معیارهای واریانس و انحراف استاندارد خطا تأیید می‌کند که فیلتر ذره‌ای در کاهش پراکندگی خطاها موفق‌تر عمل کرده است، به‌طوری‌که برای زاویه سمت، واریانس خطا در فیلتر ذره‌ای حدود ۱۰۰ برابر کمتر از فیلتر کالمن بی‌اثر بوده است. از سوی دیگر، فیلتر کالمن بی‌اثر در تخمین زاویه فراز عملکردی کمی بهتر از فیلتر ذره‌ای نشان داده است. این یافته‌ها حاکی از آن است که ترکیب این دو فیلتر می‌تواند به‌عنوان یک راه‌حل کارآمد در سیستم‌های ناوبری دقیق پهپادها مورد استفاده قرار گیرد. روش بازنمونه‌گیری به کار گرفته شده در فیلتر ذره‌ای نیز دقت تخمین زوایای غلت و سمت را به طور چشمگیری افزایش داده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Attitude and Heading Estimation of UAV Using Quaternion and Particle Filter

نویسندگان [English]

  • Aliasghar Moazzen
  • Ramazan Havangi

University of Birjand

چکیده [English]

Accurate estimation of attitude and heading in UAVs is one of the key challenges in autonomous navigation systems, playing a vital role in the control and guidance of these vehicles. In this paper, a quaternion-based particle filter with a specific sampling method and an extended Kalman filter (EKF) are employed for UAV attitude estimation. By integrating data from inertial sensors (including gyroscopes, accelerometers, and magnetometers) and applying filtering techniques, the proposed methods significantly enhance the accuracy of roll, pitch, and yaw angle estimation. The innovation of this study lies in the comprehensive comparison of the particle filter and EKF performance across two scenarios: simulated data and real-world data collected from a specific attitude and heading reference system (AHRS). The results demonstrate that the particle filter achieves remarkable improvements of over 99.99% in simulated data and over 88.48% in real-world data for roll and yaw angle estimation. Additionally, the analysis of variance and standard deviation of errors confirms that the particle filter outperforms in reducing error dispersion, with the error variance for yaw angle being approximately 100 times lower than that of the EKF. On the other hand, the EKF shows slightly better performance in pitch angle estimation. These findings suggest that a combination of these two filters can serve as an effective solution for precise navigation systems in UAVs. The resampling method implemented in the particle filter also significantly enhances the accuracy of roll and yaw angle estimation.

کلیدواژه‌ها [English]

  • State Estimation
  • Particle Filter
  • Quaternion
  • Inertial Navigation Systems
  • UAV
[1] C. Hajiyev, H. E. Soken, and S. Y. Vural, State Estimation and Control for Low-cost Unmanned AerialVehicles,Springer,2015.
[2] S. Sokolov, A. Sukhanov, and M. Polyakova, High-Precision Navigation on Analytical Trajectories Using Strapdown Inertial-Satellite Navigation System, IEEE, in International Russian Automation Conference ,27 Sep,2020.
[3] D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology,
        2nd. Institution of Engineering and Technology,2004.
[4] A. E. Dziadczyk, W. Zabierowski, and A. Napieralski, Satellite Navigation System GPS, IEEE,9th International Conference the Experience of Designing and Applications of CAD Systems in Microelectronics, 4 Sep,2007.
[5] M. S. Grewal, A. P. Andrews, and C. G. Bartone, Global Navigation Satellite Systems Inertial Navigation and Integration, Wiley Telecom,2020.
[6] K. Papfotis and P. P. Sotriadis, Long-Term Accurate Navigation AlgorithmUsing Inertial and Magnetic Field Sensor Fusion, IEEE Access, 5 Nov, 2023.
[7] M. Hlas and J. Straub, Autonomous navigation and control of unmanned aerial systems in the national airspace, IEEE Aerospace Conference, 30  Jun, 2016.
[8] Mishra and P. Palanisamy, Autonomous Advanced Aerial Mobility—An End-to-End Autonomy Framework for UAVs and Beyond, IEEE Access, vol. 11,5 Dec, 2023.
[9] M. Xie, C. Song, J. Wang, X. Wu, M. Li, and J. Xu, Unmanned Ground Vehicle Autonomous Navigation in Unknown Indoor Environments, IEEE,3rd International Conference on Electronic Technology, Communication and Information (ICETCI), 17 Jul,2023.
[10] K. Tian and K. Mirza, Sensor Fusion for Octagon an Indoor and Outdoor Autonomous Mobile Robot, IEEE in International System Conference,16May, 2022.
[11] A. B. Phillips, G. Salavasidis, et al, Autonomous Surface/Subsurface Survey System Field Trials, in Autonomous Underwater Vehicle workshop, 6 Jun,2019.
[12] M. M. Kuritsky, M. S. Goldstein, I. A. Greenwood, H. Lerman, J. E. McCarthy, and T. Shanahan, Inertial navigation, Proceedings of the IEEE, vol. 71, no.10, Oct, 1983.
[13] X. Ye, F. Song, Z. Zhang, and Q. Zeng, A Review of Small UAV Navigation System Based on Multisource Sensor Fusion, IEEE Sensors Journal, vol.23,no.17,1Sep,2023.
[14] R. Munguia and A. Grau, An Attitude and Heading Reference System (AHRS) based in a dual filter, IEEE in ETFA2011, 24 Oct, 2011.
[15] Abbasi and M. Haeri, Accuracy Improvement of GPS/INS Navigation System Using Extended Kalman Filter, IEEE, in 6th International Conference on Control, Instrumentation and Automation (ICCIA), 12 Mar,2020.
[16] G.-L. He, T. S.-Qian, S. Qiang, and Z. Pian, Research on Calibration and Parameter Compensation of MEMS Inertial Sensors Based on Error Analysis, IEEE, in Fifth International Symposium on Computational Intelligence and Design, 10 Jan, 2013.
[17] K. P. B. Chandra and D.-W. Gu, Nonlinear Filtering: Methods and Applications, 1st ed. Springer, 2019. 
[18] Y. Yu and X. Zhang, Attitude heading reference algorithm based on transformed cubature Kalman filter, Sage Journals, 17 Aug,2020.
 [19] S. Arulampalam, N. Gordon, and B. Ristic, Beyond the Kalman Filter: Particle Filters for Tracking Application,  Artech House, 2004.
[20] M. Tarek, S. Zahran, et al., Performance Analysis of Quaternion vs Euler-based Approaches in Reduced INS/GNSS Fusion Techniques, in International Telecommunications Conference (ITC-Egypt), 10 Aug, 2023.
[21] S. Kim and M. Kim, Rotation Representations and Their Conversions, IEEE Access, vol.11, 1 Jan, 2023.
[22] J. Gosliński, W. Giernacki, and A. Krolikowski, "A Nonlinear Filter for Efficient Attitude Estimation of Unmanned Aerial Vehicle (UAV)," Journal of Intelligent & Robotic Systems, vol. 95, pp. 1079–1095, Nov. 2019.
[23] D. Wang, Z. Zhu, L. Yu, H. Li, and K. Tan, "Attitude Estimation of Aircraft Based on Quaternion SRCKF-SLAM Algorithm," Computer Science and Information Systems, vol. 21, no. 4, pp. 1801–1822, 2024.
[24] Z. Zhou, C. Zeng, X. Tian, Q. Zeng, and R. Yao, "A Discrete Quaternion Particle Filter Based on Deterministic Sampling for IMU Attitude Estimation," IEEE Sensors Journal, vol. 21, no. 20, Oct. 2021.
[25] N. P. Santos, "Unmanned Aerial Vehicle Tracking Using a Particle Filter Based Approach," 2019 IEEE Underwater Technology (UT), pp. 1–10, 2019.
[26] T. Liang, K. Yang, Q. Han, C. Li, J. Li, and Q. Deng, "Attitude Estimation of Quadrotor UAV Based on QUKF," IEEE Access, vol. 11, pp. 111133-2023
[27] X. Yuan, S. Yu, S. Zhang, G. Wang, and S. Liu, "Quaternion-Based Unscented Kalman Filter for Accurate Indoor Heading Estimation Using Wearable Multi-Sensor System," Sensors, vol. 15, no. 5, pp. 10872–10890, May 2015.
[28] K. Zhou, Y. Zhao, and H. Tanaka, "Attitude Estimation Using Parallel Quaternion Particle Filter Based on New Quaternion Distribution," Transactions of the Japan Society for Aeronautical and Space Sciences, 2021,
[29] L. Chiella, M. Rossi, and F. Mariani, "Quaternion-Based Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter," Sensors, 2019,
[30] K. Zhou, Q. Liu, and H. Sun, "A Quaternion-Based Indirect Gaussian Particle Filter for Nonlinear Attitude Estimation," Rev. Sci. Instrum., 2021,
[31] Z. Zhou, Q. Zhang, Q. Liu, Q. Zeng, and X. Tian, "Adaptive Quaternion Particle Filter Using Generalized Likelihood Ratio Test for Aircraft Attitude Estimation in the Presence of Anomalous Measurement," 2021,
[32] M. B. Del Rosario, N. H. Lovell, and S. J. Redmond, "Quaternion-Based Complementary Filter for Attitude Determination of a Smartphone," IEEE Sensors Journal, 2016,
[33] Z. Hui, L. Wang, R. Yuan, and M. Gu, An Improved Particle Filter Based on UKF and Weight Optimization, in International Conference on Information Communication and Signal Processing,2020.
[34] R. Havangi, M. Teshnehlab, M. A. Nekoui, and H. Taghirad, A Study of Estimation Problem from Viewpoint of Conditional Optimization and Designing of Evolutionary Estimator, Aerosp. Mech. J., vol. 7, no.1,          pp. 27-40,2007 (In Persian). 
[35] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, Wiley –Interscience, 2006.
[36] H. Al-Jlailaty and M. M. Mansour, Efficient Attitude Estimators: A Tutorial and Survey, arXiv,7 Dec. 2020.
[37]Amirzdeh, M., Hosseini Moradi, S. A., ghobadi, N. Real Time Detection of Multi-Rotor Unmanned Aerial Vehicle Using YOLOv5 Optimized Algorithm. Journal of Advanced Defense Science & Technology, 2023; 14(1): 11-22.
[38] I. Gautam, Quaternion based attitude estimation technique involving the extended Kalman filter, M.S. thesis, Dept. Mech. Eng., Univ. of Akron,2019.