نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجو دکتری هوافضا، دانشکده مهندسی هوافضا پردیس بین المللی کیش دانشگاه تهران
2 عضو هیات علمی، گروه هوافضا، دانشکده مهندسی مکانیک دانشگاه تربیت مدرس
چکیده
عملکرد موتورهای هواپیمای تنفس طبیعی با افزایش ارتفاع به دلیل کاهش فشار و چگالی هوا به طور قابل توجهی افت میکند که بر توان، گشتاور، فشار درون سیلندر و دمای احتراق تأثیر میگذارد. این مطالعه یک تحلیل تطبیقی از نسخههای کاربراتوری (Rotax 912 ULS) و انژکتور سوخت (Rotax 912iS) موتور روتکس ۹۱۲ را با استفاده از شبیهسازیهای GT-SUITE در ارتفاعات تا ۹,۱۵۰ متر ارائه میدهد. نتایج نشان میدهد که موتور کاربراتوری به دلیل ترکیب ثابت سوخت و هوا، در ارتفاعات بالا تا ۸۰٪ کاهش توان را تجربه میکند، در حالی که موتور انژکتور سوخت با تنظیم پویا و لحظهای میزان سوخت، عملکرد پایدارتری را حفظ میکند. همچنین سیستم انژکتور سوخت (EFI) فشار درون سیلندر و پایداری احتراق را در شرایط کمبود اکسیژن بهتر حفظ میکند. اگرچه انژکتور سوخت کاهش عملکرد را مؤثرتر از کاربراتور کاهش میدهد، هر دو پیکربندی در ارتفاعات بالا افت قابل توجهی را نشان میدهند که محدودیتهای ذاتی موتورهای تنفس طبیعی را برجسته میکند. این یافتهها بر اهمیت روشهای پیشرفته جبران ارتفاع - مانند توربوشارژر یا نقشهبرداری بهینه انژکتور سوخت (EFI) - برای افزایش قابلیت اطمینان و کارایی در عملیات پروازی در ارتفاعات بالا تأکید میکند.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Comparative Analysis of Carbureted and Fuel-Injected Rotax 912 Engine Performance in High-Altitude Flight Conditions
نویسندگان [English]
- Seyed Ali Salari 1
- Fathollah Ommi 2
1 PhD student in Aerospace, Faculty of Aerospace Engineering, Kish International Campus, University of Tehran
2 Faculty of Aerospace Group, Mechanical Engineering Department, Tarbiat Modares University.
چکیده [English]
The performance of naturally aspirated aircraft engines declines significantly with increasing altitude due to reduced air pressure and density, affecting power, torque, in-cylinder pressure, and combustion temperature. This study presents a comparative analysis of the carbureted (Rotax 912 ULS) and fuel-injected (Rotax 912iS) versions of the Rotax 912 engine using GT-SUITE simulations across altitudes up to 9,150 meters. Results indicate that the carbureted engine suffers an 80% reduction in power at high altitudes due to its fixed fuel-air mixture, while the fuel-injected engine maintains more stable performance by dynamically adjusting fuel delivery. The EFI system also preserves higher in-cylinder pressure and combustion stability under oxygen-scarce conditions. Although EFI mitigates performance loss more effectively than carburetion, both configurations exhibit significant degradation at high altitudes, highlighting the inherent limitations of naturally aspirated engines. These findings underscore the importance of advanced altitude compensation methods—such as turbocharging or optimized EFI mapping—for enhancing reliability and efficiency in high-altitude aviation operations.
کلیدواژهها [English]
- Aircraft engines
- Rotax 912
- Fuel injection
- Altitude effects
- GT-SUITE simulation
- Internal combustion
- Ding, R. Liu, Z. Zhang, C. Yang, Y. Jiao, and L. Hu, “Study on the influence of high-altitude on performance of an opposed-piston gasoline engine,” Proc. 2020 Asia-Pacific Conf. Image Process. Electron. Comput. IPEC 2020, no. October 2021, pp. 164–171, 2020, doi: 10.1109/IPEC49694.2020.9115160.
[2] H. Mansouri and F. Ommi, “Performance prediction of aircraft gasoline turbocharged engine at high-altitudes,” Appl. Therm. Eng., vol. 156, pp. 587–596, Jun. 2019, doi: 10.1016/J.APPLTHERMALENG.2019.04.116.
[3] M. H. Shojaeefard, S. E. Hosseini, and J. Zare, “CFD simulation and Pareto-based multi-objective shape optimization of the centrifugal pump inducer applying GMDH neural network, modified NSGA-II, and TOPSIS,” Struct. Multidiscip. Optim., vol. 60, no. 4, pp. 1509–1525, Oct. 2019, doi: 10.1007/S00158-019-02280-0/METRICS.
[4] B. A. Shannak and M. Alhasan, “Effect of atmospheric altitude on engine performance,” Forsch. im Ingenieurwesen/Engineering Res., vol. 67, no. 4, pp. 157–160, Sep. 2002, doi: 10.1007/S10010-002-0087-Y/METRICS.
[5] S. Davari, F. Ommi, Z. Saboohi, and S. E. Hosseini, “Conceptual Design of a Conventional Aero Gas Turbine Combustor for Soot and Gaseous Emissions Reduction,” J. Engine Res., 2025.
[6] M. Dopona, N. Foxhall, and C. Dutzler, “912iS Fuel Injected Aircraft Engine,” SAE Tech. Pap., vol. 4, Oct. 2012, doi: 10.4271/2012-32-0049.
[7] S. Davari, F. Ommi, and Z. saboohi, “Experimental study of the effects of adding methylated homopolymer to gasoline on the engine performance and pollutant emissions,” J. Solid Fluid Mech., vol. 11, no. 5, pp. 199–210, 2021, doi: https://doi.org/10.22044/jsfm.2021.9753.3200.
[8] M. Otkur, “Altitude Performance and Fuel Consumption Modelling of Aircraft Piston Engine Rotax 912 S/ULS,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 23, no. 1, pp. 18–25, 2021, doi: 10.37934/araset.23.1.1825.
[9] Ł. Grabowski, K. Siadkowska, and K. Skiba, “Simulation Research of Aircraft Piston Engine Rotax 912,” MATEC Web Conf., vol. 252, p. 05007, 2019, doi: 10.1051/MATECCONF/201925205007.
[10] R. C. Nugroho et al., “Performance Simulation of Rotax 915iS PUNA MALE Engine Using AVL Boost,” AIP Conf. Proc., vol. 2941, no. 1, Dec. 2023, doi: 10.1063/5.0184501/2929197.
[11] H. Zhang, L. Shi, K. Deng, S. Liu, and Z. Yang, “Experiment investigation on the performance and regulation rule of two-stage turbocharged diesel engine for various altitudes operation,” Energy, vol. 192, p. 116653, Feb. 2020, doi: 10.1016/J.ENERGY.2019.116653.
[12] Y. Zhou et al., “Piston engine energy utilization for variable-altitude applications: A review of two-stage turbocharging technologies,” Renew. Sustain. Energy Rev., vol. 223, p. 116036, Nov. 2025, doi: 10.1016/J.RSER.2025.116036.
[13] T. D. Husaboe, M. D. Polanka, J. A. Rittenhouse, P. J. Litke, and J. L. Hoke, “Dependence of Small Internal Combustion Engine’s Performance on Altitude,” https://doi.org/10.2514/1.B35133, vol. 30, no. 5, pp. 1328–1333, Sep. 2014, doi: 10.2514/1.B35133.
[14] T. D. Husaboe, J. A. Rittenhouse, M. D. Polanka, P. J. Litke, and J. L. Hoke, “Small internal combustion engine dependence on inlet pressure and temperature at altitude,” 49th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf., vol. 1 PartF, 2013, doi: 10.2514/6.2013-3649;PAGEGROUP:STRING:PUBLICATION.
[15] S. Davari, F. Ommi, Z. Saboohi, and S. E. Hosseini, “Hybrid Multi-Objective Optimization of Gas Turbine Combustor to Reduce Non-Volatile Particulate Matter and Gaseous Emissions,” 2025, doi: SSRN 5191746.
[16] Y. Xu et al., “Multi-objective optimization of variable altitude high-dimensional compression-ignition aviation piston engine based on Kriging model and NSGA-III,” Energy, vol. 320, p. 135306, Apr. 2025, doi: 10.1016/J.ENERGY.2025.135306.
[17] S. Davari and S. E. Hosseini, “A review on the oxygenated fuels on engine performance parameters and emissions of spark ignition engines,” OSF, 2025, doi: https://doi.org/10.31219/osf.io/r2e7f_v1.
[18] W. C. Koh, N. M. Mazlan, P. Rajendran, and M. A. Ismail, “A Computational Study to Investigate the Effect of Altitude on Deteriorated Engine Performance,” IOP Conf. Ser. Mater. Sci. Eng., vol. 370, no. 1, p. 012001, May 2018, doi: 10.1088/1757-899X/370/1/012001.
[19] Y. F. Gorgulu, B. Sahin, S. Ekici, and T. H. Karakoc, “Altitude-Dependent Analysis of Combustion Performance and Emissions in a Commercial Aircraft Engine Leveraging Real Engine Data,” Int. J. Aeronaut. Sp. Sci., pp. 1–17, Jun. 2025, doi: 10.1007/S42405-025-00982-Y/TABLES/3.
[20] S. E. Hosseini and F. Salehi, “Analyzing overlap ratio effect on performance of a modified Savonius wind turbine,” Phys. Fluids, vol. 35, no. 12, Dec. 2023, doi: 10.1063/5.0180735/2929698.
[21] D. Jamshidi, D. P. Borazjani, S. E. Hosseini, and S. Davari, “Impact of Exhaust Manifold Design on Internal Combustion Engine Performance Combustion Engine Performance,” pp. 0–9, 2025, doi: 10.20944/preprints202502.1065.v1.
[22] S. Davari, F. Ommi, Z. Saboohi, and M. Safar, “Experimental study of the effect of a non-oxygenated additive on spark-ignition engine performance and pollutant emissions,” Int. J. Eng. Trans. A Basics, vol. 34, no. 4, pp. 1035–1045, 2021, doi: 10.5829/ije.2021.34.04a.30.
[23]Amirzdeh, M., Hosseini Moradi, S. A., ghobadi, N. Real Time Detection of Multi-Rotor Unmanned Aerial Vehicle Using YOLOv5 Optimized Algorithm. Journal of Advanced Defense Science & Technology, 2023; 14(1): 11-22.
[24] S. Davari, F. Ommi, and Z. Saboohi, “Investigating the Effects of Adding Butene , Homopolymer to Gasoline on Engine Performance Parameters and Pollutant Emissions : Empirical Study and Process Optimization,” J. Inst. Eng. Ser. C, 2021, doi: 10.1007/s40032-021-00780-x.