نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده علوم پایه، دانشگاه پدافند هوایی خاتم الانبیاء(ص)، تهران، ایران

چکیده

شبکه‌های مشبک کامپوزیتی تقویت‌شده با نانوالیاف سیلیس و کربن که با مواد اسفنجی پر شده‌اند، می‌توانند به عنوان نانو ساختارهای سبک‌وزن جاذب رادار به کار روند. در این مقاله، روش محاسباتی مبتنی بر روش ممان دوره‌ای (PMM) برای محاسبه ضرایب بازتاب این شبکه‌های مشبک کامپوزیتی توسعه داده شده و دو مکانیزم مختلف برای کاهش بازتاب در این شبکه‌ها شناسایی شده‌اند. نتایج حاصل از این مکانیزم شیبه سازی شده، بیانگر این است که در فرکانس‌های پایین، ضرایب بازتاب با افزایش کسر حجمی دیواره سلولی شبکه افزایش می‌یابد. در فرکانس‌های بالا، چندین لوب پراش از صفحه دوگانه دوره‌ای دور می‌شوند و ضرایب بازتاب به هر دو کسر حجمی دیواره سلولی و فاصله بین عناصر بستگی دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Calculation of Reflection Coefficient of Radar Absorbing Composite Lattice Grids Using Silica and Carbon Nanofibers

نویسندگان [English]

  • Hamidreza Alborznia
  • Seyed Ali Hosseini Moradi

Department of Physics, Faculty of Basic Science, Khatam Al-Anbia (PBU) University, Tehran, Iran.

چکیده [English]

Composite lattice grids reinforced with silica and carbon nanofibers filled with spongy materials can be used as lightweight radar absorbing nanostructures1. In this paper, a computational approach based on the Periodic Moment Method (PMM) has been developed to calculate the reflection coefficients of these composite lattice grids, and two different mechanisms for reflection reduction in these grids have been identified2. The results from this simulation mechanism indicate that at low frequencies, the reflection coefficients increase with the volume fraction of the grid cell wall3. At high frequencies, several diffraction lobes propagate away from the doubly periodic plane, and the reflection coefficients depend on both the cell wall volume fraction and the interelement distance4.

کلیدواژه‌ها [English]

  • Lightweight Radar-Absorbing Nanostructures
  • Periodic Moment Method
  • Reflection Coefficient
[1] Vinoy K.J, and Jha R.M, Radar absorbing materials- From theory to design and characterization(Book). Boston, MA: Kluwer Academic Publishers, 1996.
[2] Oh J.-H., et al., Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Composites Part B: Engineering, 2004. 35(1): p. 49-56.
[3] Zhang Y, Fan H, and Fang D 2008 Composites Science and Technology  68 15 p. 3299-3304.
[4] Alborznia H, Naseri M and Fatahi N, 2019 Optik 180 125.
[5] Fan H, Yang W, and Chao Z 2007 Composites Science and Technology 67 15 p. 3472-3479.
[6] Alborznia H, Amirian S and Mohammadi S T 2021 Journal of Research on Many-body Systems 11 1.
[7] Alborznia H, 2022 Surf. Rev. Lett. 29 2250078.
[8] Hosseini Moradi S A and Alborznia H, 2023 Aerospace Defense 2 1-16.
[9] Alborznia H R, and Mohammadi S T, 2021 Bull. Mater. Sci. 44 180.
[10] Hassanpoor H, Dostimotlagh S N, Alborznia H, 2023 Radar 11 1.
[11] Alborznia H R and Mohammadi S T, 2020 Iran. J. Phys. Res.  20 259.
[12] Ram B and Mizuseki H, 2018 Carbon 137 266.
[13] Alborznia H, Amirian S, Nazirzadeh M, 2022 Optical and Quantum Electronics 54 10 608.
[14] Evans A, 2001 MRS bulletin 26 10 p. 790-797.
[15] Hoat D M, Amirian S, Alborznia H, Laref A, Reshak A H and Naseri M 2021 Indian J. Phys 95 2365.
[16] Celik F A, 2022 Bull. Mater. Sci. 45 108
[17] Alborznia H and Mohammadi S T, 2022 Indian J. phys. 32 2
[18] Rajbanshi B, Sarkar S, Mandal B, Sarkar P, 2016 Carbon 100 118-125.
[19] Alborznia H, Naseri M and Fatahi N, 2019 Superlattice Microstruct. 133 106217
[20] Saleh B E A, and Teich M C ,1991 Fundamentals of Photonics, Wiley, New York, Chapter 15 542
[21] Amirian S, Alborznia H, Yalameha S, 2024 Solid State Communications 394 115693.
[22]  Alborznia H,  and  Hosseini Moradi S A, 2023 Aerospace Defense1-11.