نوع مقاله : مقاله پژوهشی

نویسنده

هیات علمی، پژوهشگاه هوافضا، وزارت علوم تحقیقات و فناوری، تهران، ایران.

چکیده

این تحقیق یک چارچوب نوآورانه برای طراحی هواپیما معرفی می‌کند که در آن از ادغام منطق فازی، الگوریتم‌های بهینه‌سازی فرا ابتکاری، و تحلیل‌های جبهه پارتوی سه ‌بعدی بهره گرفته شده است. در فاز ابتدایی، وزن خالی و وزن برخاست هواپیما با استفاده از روش‌های سنتی (راسکم) طراحی تعیین گردید. به‌منظور ارزیابی اعتبار این مقادیر، از منطق فازی به عنوان ابزار تصمیم‌گیری بهره گرفته شد. فرآیند بهینه‌سازی مسئله طراحی فوق از طریق به‌کارگیری چندین الگوریتم فرا ابتکاری، از جمله الگوریتم بهینه‌سازی شاهین‌های هریس، شکارچیان دریایی، نهنگ، و زنبورهای عسل مصنوعی انجام شده است. این الگوریتم‌ها به ‌صورت هم‌زمان متغیرهایی از جمله وزن خالی، وزن برخاست، و سوخت مصرفی را بهینه می کنند. نتایج حاصل از فرآیند بهینه‌سازی، با مدل‌های مرجع در هواپیماهای مشابه (روش راسکم) مقایسه گردید. افزون بر این، جبهه‌های پارتوی سه‌بعدی برای متغیرهای طراحی نظیر وزن خالی، وزن برخاست و وزن سوخت مصرفی تولید شدند تا شاخص‌های کلیدی عملکرد، از جمله بازدهی سوخت، ظرفیت بار، و بهره‌وری کلی طراحی مورد ارزیابی قرار گیرند. تحلیل‌های صورت‌گرفته در این مطالعه، منجر به توسعه مدلی بهینه برای یک تاکسی هوایی شده است که در آن بهبودهای قابل توجهی در پارامترهای عملکردی و بهره‌وری مشاهده گردید.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Optimized Multi-Objective Comparative Design of 3D Pareto Front for Air Taxis Using Metaheuristic Algorithms: Harris Hawks, Sea Hunters, Whale, Artificial Bee Colony, and Fuzzy Logic

نویسنده [English]

  • Iman Iman Shafieenejad

Assistant Professor, Aerospace Research Institute, Ministry of Science Research & Technology, Tehran, Iran.

چکیده [English]

Background & Purpose: This study introduces an innovative framework for aircraft design that integrates fuzzy logic, metaheuristic optimization algorithms, and three-dimensional Pareto front analysis. In the initial phase, the aircraft’s empty and takeoff weights were calculated using conventional design methods. Fuzzy logic was subsequently employed as a decision-making tool to assess the validity of these estimates. Key design parameters such as wing area and engine thrust were identified using a novel computational methodology.

Methodology: The optimization of critical design variables was performed using multiple advanced metaheuristic algorithms, including Harris Hawks Optimization (HHO), Marine Predators Algorithm (MPA), Whale Optimization Algorithm (WOA), and Artificial Bee Colony (ABC). These algorithms simultaneously optimized parameters including empty weight, takeoff weight, stall speed, and flight range. The optimized results, particularly in terms of wing area and engine thrust, were benchmarked against reference models of similar aircraft.

Findings: Three-dimensional Pareto fronts were generated for design parameters such as empty weight, takeoff weight, and fuel weight to evaluate key performance indicators including fuel efficiency, payload capacity, flight range, and overall performance. The results demonstrated notable improvements in key aerodynamic and propulsion characteristics.

Conclusion: The comprehensive analysis conducted in this study led to the development of an optimized model of a propeller-driven aircraft. The proposed approach resulted in significant enhancements in performance metrics and overall efficiency, validating the effectiveness of the integrated optimization and decision-making framework.

کلیدواژه‌ها [English]

  • Multi-Objective
  • Metaheuristic Algorithms
  • Fuzzy Logic
  • Pareto Front
  • Hybrid Design Approach
[1] Kundu, A. K., Price, M. A., & Riordan, D. (2019). Conceptual aircraft design: An industrial approach. John Wiley & Sons.
[2] Faa. (2022). Working to build a net-zero sustainable aviation system by 2050. Acta Astronautica, 183, 115–130. https://www.faa.gov/newsroom/working-build-net-zero-sustainable-aviation-system-2050
[3] Fioriti, M. (2019). Aircraft conceptual design using metaheuristic-based reliability. Acta Astronautica, 161, 249–261. https://doi.org/10.1016/j.actaastro.2019.03.020.
[4] Liu, W., Wang, H., Chen, Y., & Zhou, Y. (2018). Meta-heuristic global optimization algorithms for aircraft engines modelling and controller design. Acta Astronautica, 155, 1–9. https://doi.org/10.1016/j.actaastro.2018.02.020
[5] Mirtabaei, S. M., & Naderi, A. (2024). Design and simulation of micro-UAV using topology optimization and additive manufacturing technology. Aerospace Mechanics Journal, 20, 59–74.
[6] Babaei, A., Setayandeh, S., & Farrokhfal, H. (2019). Multidisciplinary design optimization of an unmanned air vehicle and final solution selection based on fuzzy satisfaction degree function. Aerospace Mechanics Journal.
[7] Setayandeh, S. M. R. (2024). Developing a multidisciplinary analyzing and design optimization framework for fixed wing micro air vehicles. Aerospace Mechanics Journal, 76, 69–85.
[8] Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849–872.
[9] Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine predators algorithm: A nature-inspired metaheuristic. Expert Systems with Applications, 152, 113377. https://doi.org/10.1016/j.eswa.2020.113377
[10] Sharpe, P. D., & Hansman, R. J. (2021). Aerosandbox: A differentiable framework for aircraft design optimization.
[11] Omoarebun, E. N., Cimtalay, S., & Mavris, D. N. (2023). Formalizing the decomposition process between elements in the RFLP framework using axiomatic design theory. In AIAA AVIATION 2023 Forum (p. 3771).
[12] Cao, Y., Tan, W., & Wu, Z. (2018). Aircraft icing: An ongoing threat to aviation safety. Aerospace Science and Technology, 75, 353–385.
[13] Hwang, J. T., Jasa, J. P., & Martins, J. R. (2019). High-fidelity design-allocation optimization of a commercial aircraft maximizing airline profit. Journal of Aircraft, 56(3), 1164–1178.
[14] Ghanifar, M., Kamzan, M., & Tayefi, M. (2023). Different intelligent methods for coefficient tuning of quadrotor feedback-linearization controller. Journal of Aerospace Science and Technology, 16(1), 56–65. https://doi.org/10.22034/jast.2023.355914.1123
[15] Marciello, V., et al. (2023). Design exploration for sustainable regional hybrid-electric aircraft: A study based on technology forecasts. Aerospace, 10(2), 165.
[16] Sarojini, D., et al. (2023). Large-scale multidisciplinary design optimization of an eVTOL aircraft using comprehensive analysis. In AIAA SciTech 2023 Forum (p. 0146).
[17] Arat, H. T., Sürer, M. G., Gökpinar, S., & Aydin, K. (2023). Conceptual design analysis for a lightweight aircraft with a fuel cell hybrid propulsion system. Energy Sources, Part A, 45(1), 46–60.
[18] Ünal, N., Öz, Y., & Oktay, T. (2023). Conceptual design modeling by the novel aircraft conceptual design and analysis system (ACDAS). Aircraft Engineering and Aerospace Technology, 95(5), 799–813.
[19] Gradel, S., Hansmann, P., & Stumpf, E. (2023). SystemXF: A novel approach for holistic system modeling in aircraft conceptual design. CEAS Aeronautical Journal, 14(1), 57–73.
[20] Zimmnau, M., Schültke, F., & Stumpf, E. (2023). UNICADO: Multidisciplinary analysis in conceptual aircraft design. CEAS Aeronautical Journal, 14(1), 75–89.
[21] Li, J., & Zhang, M. (2021). Data-based approach for wing shape design optimization. Aerospace Science and Technology, 112, 106639.
[22] Giorgetti, A., Rolli, F., La Battaglia, V., Marini, S., & Arcidiacono, G. (2023). Axiomatic design using multi-criteria decision making for material selection in mechanical design: Application in different scenarios. https://www.springerprofessional.de/en/axiomatic-design-using-multi-criteria-decision-making-for-materi/25929336
[23] Jonsson, E., Riso, C., Lupp, C. A., Cesnik, C. E., Martins, J. R., & Epureanu, B. I. (2019). Flutter and post-flutter constraints in aircraft design optimization. Progress in Aerospace Sciences, 109, 100537.
[24] Sgueglia, A., et al. (2020). Multidisciplinary design optimization framework with coupled derivative computation for hybrid aircraft. Journal of Aircraft, 57(4), 715–729.
[25] Silva, H. L., Resende, G. J., Neto, R. M. C., Carvalho, A. R. D., Gil, A. A., Cruz, M. A. A., & Guimarães, T. A. M. (2021). A multidisciplinary design optimization for conceptual design of hybrid-electric aircraft. Structural and Multidisciplinary Optimization. https://doi.org/10.1007/s00158-021-03033-8
[26] Hosseini, S., Vaziry-Zanjany, M. A., & Ovesy, H. R. (2024). A framework for aircraft conceptual design and multidisciplinary optimization. Aerospace, 11(4), 273. https://doi.org/10.3390/aerospace11040273
[27] Phuekpan, K., Khammee, R., Panagant, N., Bureerat, S., Pholdee, N., & Wansasueb, K. (2025). A comparison of modern metaheuristics for multi-objective optimization of transonic aeroelasticity in a tow-steered composite wing. Aerospace, 12(2), 101. https://doi.org/10.3390/aerospace12020101
[28] Champasak, P., Panagant, N., Pholdee, N., Bureerat, S., & Yildiz, A. (2020). Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle. Aerospace Science and Technology, 105783. https://doi.org/10.1016/j.ast.2020.105783
[29] Winyangkul, S., Sleesongsom, S., & Bureerat, S. (2021). Reliability-based design of an aircraft wing using a fuzzy-based metaheuristic. Applied Sciences, 11(14), 6463. https://doi.org/10.3390/app11146463
[30] Setayandeh, M. R., & Babaei, A. (2020). Multidisciplinary design optimization of an aircraft by using knowledge-based systems. Soft Computing. https://doi.org/10.1007/s00500-020-04684-3
[31] Todorov, V. T., Rakov, D., & Bardenhagen, A. (2024). A morphological analysis of methods for conceptual aircraft design under uncertainties. Technical University of Berlin, Institute of Aeronautics and Astronautics. https://doi.org/10.1016/j.ast.2024.
[32] Xue, L., Ma, D., & Wang, X. (2016). Low temperature characteristic analysis and enhancement of hydraulic system on high-altitude and long-endurance unmanned vehicle. In 2016 IEEE International Conference on Aircraft Utility Systems (AUS) (pp. 802–805). IEEE.
[33] Borgest, N., Korovin, M., Gromov, A., & Gromov, A. (2015). The concept of automation in conventional systems creation applied to the preliminary aircraft design. In Soft Computing in Computer and Information Science (pp. 147–156).
[34] Brelje, B. J., & Martins, J. R. (2019). Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches. Progress in Aerospace Sciences, 104, 1–19.
[35] Roskam, J. (1990). What is needed to teach aeronautical engineering students how to design aircraft? In Aircraft Design, Systems and Operations Conference (p. 3257).
[36] Roskam, J., Ackers, D. E., & Gerren, D. S. (1995). Design, analysis and control of large transports so that control of engine thrust can be used as a back-up of the primary flight controls.
[37] Roskam, J. (1985). Airplane design. DARcorporation.
[38] Jorde, K., Schneider, M., & Zöllner, F. (2020). Invited lecture: Analysis of instream habitat quality–preference functions and fuzzy models. In Stochastic Hydraulics 2000 (pp. 671–680). CRC Press.
[39] Ardil, C. (2022). Fighter aircraft selection using fuzzy preference optimization programming (POP). International Journal of Aerospace and Mechanical Engineering, 16(10), 279–290.