نوع مقاله : مقاله پژوهشی

نویسندگان

1 مدیر گروه مواد و پدافند غیرعامل، دانشکده مهندسی مکانیک، دانشگاه پدافند هوایی خاتم‌الانبیاء(ص)

2 استادیار، دانشکده مهندسی کنترل، دانشگاه پدافند هوایی خاتم‌الانبیاء(ص)، تهران، ایران

3 کارشناس ارشد عمران سازه، دانشگاه زند، شیراز، ایران

چکیده

با توجه به اهمیت حوزه دفاعی وجود حملات تروریستی نیاز به تقویت سازه‌های حساس و حیاتی کشور به ‌شدت ضروری است. در این مطالعه دو پارامتر مهم در مقاوم‌سازی سازه‌ها در برابر بار انفجار مورد بررسی قرار گرفته است. در مرحله اول جنس مصالح مقاوم بتنی در برابر بار انفجار و در مرحله دوم شکل هندسی سازه‌ای مقاوم در برابر بار انفجار بررسی شده است. برای تعیین مصالح بتنی مقاوم در برابر انفجار از مشخصات مکانیکی و نمودار تنش کرنش مخلوط‌های بتنی ساخته شده در آزمایشگاه برای مدل‌سازی در نرم‌افزار المان محدود آباکوس استفاده شد. با انجام مدل‌سازی عددی، بتن با طرح‌های مختلف تحت بار انفجار قرار گرفت و مشخص شد که بتن تقویت شده با الیاف ترکیبی فولادهای ماکرو-میکرو بهترین مقاومت را در برابر بار انفجار از خود نشان می‌دهد. با تقویت بتن با این ترکیب از الیاف می‌توان تا حدود 70 درصد میزان خرابی را در دال بتنی کاهش داد. جهت تعیین شکل سازه‌ای مقاوم در برابر انفجار، دو شکل سازه‌ای مکعبی و نیم‌کره تحت بار انفجار قرار گرفتند. نتایج نشان داد که شکل سازه‌ای نیم‌کره مقاومت بیشتری در برابر بار انفجار از خود نشان داده و با تغییر شکل سازه‌ از مکعب به نیم‌کره، میزان آسیب سازه تحت بار انفجار به میزان 49 درصد کاهش می‌یابد. همچنین دو سازه نیم‌کره ساخته شده با بتن شاهد و الیاف ترکیبی فولاد ماکرو-فولاد میکرو، تحت بار انفجار شدید قرار گرفتند و مشخص شد که استفاده از الیاف در این شکل از سازه‌ها به میزان 26 درصد آسیب‌پذیری را کاهش می‌دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Reinforcement of structures against explosion by providing suitable structural shape and determining the type of the optimal fibers in concrete mix

نویسندگان [English]

  • Mohammad Sepehri 2
  • mohammad amin abbasi 3

2 Assistant Professor, Department of Control Engineering, Khatam Ol Anbia University, Tehran, Iran

3 Master of science in Structural Engineering, Zand University, Shiraz, Iran.

چکیده [English]

In this article, two important parameters in the discussion of strengthening structures against blast load have been investigated in Abaqus finite element software. In the first step, the type of concrete materials resistant to the blast load and in the second step, the geometric shape of the structure resistant to the blast load has been investigated. To determine the blast-resistant concrete materials, reinforced concrete design models were subjected to blast load, and finally concrete reinforced with macro steel-micro steel hybrid fibers showed the best resistance against blast load. By reinforcing concrete with macro steel-micro steel hybrid fibers, the amount of concrete damage can be reduced by 70%. Also, to determine the structural form resistant to explosion, two structural forms, cubic and hemispherical, were subjected to the blast load and the results showed that the hemispherical structural form shows more resistance to the blast load. Also, to determine the structural form resistant to explosion, two structural forms, cubic and hemispherical, were subjected to the blast load, and the results showed that the hemispherical structural form shows more resistance to the blast load, and the level of structural damage It is reduced to 49%. Also, two hemispherical structures made with control concrete and macro steel-micro steel composite fibers were subjected to severe blast load and it was found that the use of fibers in this form of structures reduces the vulnerability by 26%.

کلیدواژه‌ها [English]

  • Concrete
  • Explosion
  • Hemisphere structure
  • Cubic structure
  • Strengthening
[1] Ye H, Jiang C, Qi W, Feng Z. “Study on Explosion Resistance of Reinforced Concrete Slab Wrapped with Glass Fibre Reinforced Polymer (GFRP)”. Journal of Physics: Conference Series: IOP Publishing. 012009, 2022.
[2] Yang D, Zhang B, Liu G. “Experimental study on spall resistance of steel-fiber reinforced concrete slab subjected to explosion”. International Journal of Concrete Structures and Materials. 15-23, 2021.
[3] Algassem O, Li Y, Aoude H. “Ability of steel fibers to enhance the shear and flexural behavior of high-strength concrete beams subjected to blast loads”. Engineering Structures. 199, 109611, 2019.
[4] Luccioni B, et al. “Experimental and numerical analysis of blast response of High Strength Fiber Reinforced Concrete slabs”. Engineering structures. 175, 113-22, 2018.
[5] Luccioni B, et al. “Effect of steel fibers on static and blast response of high strength concrete”. International journal of impact engineering. 107, 23-37, 2017.
[6] Li J, Wu C, Hao H. “Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion”. Engineering Structures.102, 395-408, 2015.
[7] Aoude H, Dagenais FP, Burrell RP, “Saatcioglu M. Behavior of ultra-high performance fiber reinforced concrete columns under blast loading”. International Journal of Impact Engineering. 80, 185-202, 2015.
[8] Tabatabaei ZS. “Numerical analyses of long carbon fiber reinforced concrete panels exposed to dynamic loading”. Missouri University of Science and Technology, 2013.
[9] Salehi H. “Increasing the defense capability of steel structures by determining optimal steel connections against blast load and providing methods to improve their performance”. Aerospace Defense. 2, 70-92, 2023.
[10] Salehi H, Heshmati rad M, Vaseli khabbaz M. “Numerical analysis of the penetrating of non-nuclear bunker buster bombs in underground structures and the changes of the energy in the projectile”. Journal of Aeronautical Engineering. 17, 23-43, 2015.
[11] Yongxiang D, et al. “Numerical analysis on protecting performance of layered arch structures subjected to blast loading”. Defence Science Journal. 59, 131-6, 2009.
[12] Xue X, Yang X, Zhang W. “Numerical modeling of arch dam under blast loading”. Journal of Vibration and Control.20, 256-65, 2014.
[13] Yue ZY, et al. “Experimental study on the anti-blast performance of polyurea reinforced concrete arch structures”. Journal of Building Engineering. 77, 107483, 2023.
[14] Chen W, Hao H. “Numerical study of a new multi-arch double-layered blast-resistance door panel”. International Journal of Impact Engineering.43, 16-28, 2012.
[15] Salehi H. “Reinforcing Doors of the Safe Constructions Using Multi-Arch Geometric Structures”. Journal of Advanced Defense Science & Technology. 13, 203-14, 2022.
[16] Salehi H, Sahebi FM. “Enhancing the Performance of Explosion-Proof Doors by Focusing on the Configuration of Stiffeners”. Journal of Advanced Defense Science & Technology. 14, 79-91, 2023.
[17] Kumar V, Kartik K, Iqbal MA. “Experimental and numerical investigation of reinforced concrete slabs under blast loading”. Engineering Structures. 206, 110125, 2020.
[18] Holmquist TJ, Johnson GR. “A computational constitutive model for glass subjected to large strains, high strain rates and high pressures”, 2011.
[19] Polanco Loria M, et al. “Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model”. International Journal of Impact Engineering. 35, 290-303, 2008.
[20] Barton D. “Determination of the high strain rate fracture properties of ductile materials using a combined experimental/numerical approach”. International journal of impact engineering. 30, 1147-59, 2004.
[21] Khorami M, Jamshidi M. “Processing of natural and artificial fibers in the production of cement sheets”. Tehran: Road, Housing and Urban Development Research Center; 1354.
[22] Naniz A, Maesoumi A. “Fiber reinforced concrete”. Tehran, Iran: Sirjan Nano Thread and Granule Company; 1396.
[23] Hosseini Moradi, S. A. Increasing concrete performance with synthesized graphene oxide nanoparticles and silica. Concrete Research, 2025; 18(1): 93-107. doi: 10.22124/jcr.2025.27381.1660
[23] TAHASEEN S. “Reinforced Cement Concrete (RCC) Dome Design”. International Journal of Civil and Structural Engineering Research. 3, 39-45, 2015.