Authors

1 Department of Physics, Islamic Azad University, Kermanshah, Iran

2 Assistant Professor - Department of Physics - Air Defense University - Tehran - Iran

Abstract

In this article, new research is based on density functional theory (DFT), and simulation of first-principles calculations, to investigate the effects of vertical compressive strain on the properties of two-dimensional penta-graphene nanostructure. First, to validate this research's results, the structural and electronic properties of penta-graphene were investigated in the optimal state, and the results show a good agreement with previous research. Investigating the electronic properties of penta-graphene under the conditions of compressive strain indicates the change of the energy band gap from indirect to direct. Also, the examination of the optical properties of this two-dimensional nanostructure under compressive strain conditions shows the compatibility of this nanostructure's optical and electronic behaviors. According to the results obtained in this research, the two-dimensional nanostructure of penta-graphene can be introduced as a suitable material for the design of electro-optical devices.

Keywords

Main Subjects

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V et al 2004 Science 306 666
[2] Okada S 2008 Phys. Rev. B 77 041408
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V et al 2005 Nature 438 197
[4] Balendhran S, Walia S, Nili H, Sriram S and Bhaskaran M 2015 Small 11 640
[5] Zhang S, Zhou W, Ma Y, Ji J, Cai B, Yang S A et al 2017 Nano Lett. 17 3434
[6] Althib H, Flemban  T H, Aljameel A I, Mera A, Ashiq MGB, Mahmood Q  et al 2021 Bull. Mater. Sci. 44 254
[7] Lopez-Bezanilla A and Littlewood P B 2015 J. Phys. Chem.C 119 19469
[8] Benidris M, Aziz Z, Khandy SA, Terkhi S, Ahmad M A, Bouadjemi  B et al 2021 Bull. Mater. Sci. 44  221
[9] Zhou W, Guo S, Zhang S, Zhu Z, Song X, Niu T et al 2018 Nanoscale 10 3350
[10] Alborznia H, Naseri M and Fatahi N 2019 Optik 180 125
[11] Alborznia H, Amirian S and Mohammadi S T 2021 Journal of Research on Many-body Systems 11 1
[12] Wakhare S Y and Deshpande M D 2019 Bull. Mater. Sci.  42 206
[13] Alborznia H R and Mohammadi S T 2021 Bull. Mater. Sci. 44  180
[14] Celik F A  2022 Bull. Mater. Sci. 45 108
[15] Alborznia H R and Mohammadi S T 2020 Iran. J. Phys. Res.  20 259
[16] Alborznia H and Mohammadi S T 2022 Indian J. phys. 32 2
[17] Tayran C, Caglayan R, Mogulkoc Y, Cakmak M and Alkan B 2021 J. Elec. Mater.  50 6253
[18] Ram B and Mizuseki H 2018 Carbon 137 266
[19] Hoat D M, Amirian S, Alborznia H, Laref A, Reshak A H and Naseri M 2021 Indian J. Phys 95 2365
[20] Alborznia H, Naseri M and Fatahi N 2019 Superlattice Microstruct. 133 106217
[21] Alborznia H 2022 Surf. Rev. Lett. 29 2250078
[22] Zhang S, Zhou J, Wang Q, Chen X,  Kawazoe Y, Jena P, 2015 Proceedings of the National Academy of Sciences 112 2372-2377.
[23] Rajbanshi B, Sarkar S, Mandal B, Sarkar P, Carbon, 2016 100 118-125.
[24] Blaha P, Schwarz K, Madsen Georg K H, Kvasnicka D, Luitz J, Laskowski R et al 2013 An augmented planeWave+local orbitals program for calculating crystal properties (revised edition) WIEN2k 13.1 (release 06/26/2013) Wien2K users guide, ISBN 3-9501031-1-2J.P.
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Ehrenreich H and Cohen M H 1959 Phys. Rev. 115 786
[28] Birch F 1986 J. Geophys. Res.: Solid Earth 91 4949
[29] Saleh B E A and Teich M C 1991 Fundamentals of Photonics, Wiley, New York, Chapter 15 542
[30] Abt R, Ambrosch-Draxl C and Knoll P 1994 Physica B: Condens. Matter 194–196 1451