[1] Kundu, A. K., Price, M. A., & Riordan, D. (2019). Conceptual aircraft design: An industrial approach. John Wiley & Sons.
[4] Liu, W., Wang, H., Chen, Y., & Zhou, Y. (2018). Meta-heuristic global optimization algorithms for aircraft engines modelling and controller design. Acta Astronautica, 155, 1–9. https://doi.org/10.1016/j.actaastro.2018.02.020
[5] Mirtabaei, S. M., & Naderi, A. (2024). Design and simulation of micro-UAV using topology optimization and additive manufacturing technology. Aerospace Mechanics Journal, 20, 59–74.
[6] Babaei, A., Setayandeh, S., & Farrokhfal, H. (2019). Multidisciplinary design optimization of an unmanned air vehicle and final solution selection based on fuzzy satisfaction degree function. Aerospace Mechanics Journal.
[7] Setayandeh, S. M. R. (2024). Developing a multidisciplinary analyzing and design optimization framework for fixed wing micro air vehicles. Aerospace Mechanics Journal, 76, 69–85.
[8] Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849–872.
[9] Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine predators algorithm: A nature-inspired metaheuristic.
Expert Systems with Applications, 152, 113377.
https://doi.org/10.1016/j.eswa.2020.113377
[10] Sharpe, P. D., & Hansman, R. J. (2021). Aerosandbox: A differentiable framework for aircraft design optimization.
[11] Omoarebun, E. N., Cimtalay, S., & Mavris, D. N. (2023). Formalizing the decomposition process between elements in the RFLP framework using axiomatic design theory. In AIAA AVIATION 2023 Forum (p. 3771).
[12] Cao, Y., Tan, W., & Wu, Z. (2018). Aircraft icing: An ongoing threat to aviation safety. Aerospace Science and Technology, 75, 353–385.
[13] Hwang, J. T., Jasa, J. P., & Martins, J. R. (2019). High-fidelity design-allocation optimization of a commercial aircraft maximizing airline profit. Journal of Aircraft, 56(3), 1164–1178.
[14] Ghanifar, M., Kamzan, M., & Tayefi, M. (2023). Different intelligent methods for coefficient tuning of quadrotor feedback-linearization controller. Journal of Aerospace Science and Technology, 16(1), 56–65. https://doi.org/10.22034/jast.2023.355914.1123
[15] Marciello, V., et al. (2023). Design exploration for sustainable regional hybrid-electric aircraft: A study based on technology forecasts. Aerospace, 10(2), 165.
[16] Sarojini, D., et al. (2023). Large-scale multidisciplinary design optimization of an eVTOL aircraft using comprehensive analysis. In AIAA SciTech 2023 Forum (p. 0146).
[17] Arat, H. T., Sürer, M. G., Gökpinar, S., & Aydin, K. (2023). Conceptual design analysis for a lightweight aircraft with a fuel cell hybrid propulsion system. Energy Sources, Part A, 45(1), 46–60.
[18] Ünal, N., Öz, Y., & Oktay, T. (2023). Conceptual design modeling by the novel aircraft conceptual design and analysis system (ACDAS). Aircraft Engineering and Aerospace Technology, 95(5), 799–813.
[19] Gradel, S., Hansmann, P., & Stumpf, E. (2023). SystemXF: A novel approach for holistic system modeling in aircraft conceptual design. CEAS Aeronautical Journal, 14(1), 57–73.
[20] Zimmnau, M., Schültke, F., & Stumpf, E. (2023). UNICADO: Multidisciplinary analysis in conceptual aircraft design. CEAS Aeronautical Journal, 14(1), 75–89.
[21] Li, J., & Zhang, M. (2021). Data-based approach for wing shape design optimization. Aerospace Science and Technology, 112, 106639.
[23] Jonsson, E., Riso, C., Lupp, C. A., Cesnik, C. E., Martins, J. R., & Epureanu, B. I. (2019). Flutter and post-flutter constraints in aircraft design optimization. Progress in Aerospace Sciences, 109, 100537.
[24] Sgueglia, A., et al. (2020). Multidisciplinary design optimization framework with coupled derivative computation for hybrid aircraft. Journal of Aircraft, 57(4), 715–729.
[25] Silva, H. L., Resende, G. J., Neto, R. M. C., Carvalho, A. R. D., Gil, A. A., Cruz, M. A. A., & Guimarães, T. A. M. (2021). A multidisciplinary design optimization for conceptual design of hybrid-electric aircraft.
Structural and Multidisciplinary Optimization.
https://doi.org/10.1007/s00158-021-03033-8
[26] Hosseini, S., Vaziry-Zanjany, M. A., & Ovesy, H. R. (2024). A framework for aircraft conceptual design and multidisciplinary optimization.
Aerospace, 11(4), 273.
https://doi.org/10.3390/aerospace11040273
[27] Phuekpan, K., Khammee, R., Panagant, N., Bureerat, S., Pholdee, N., & Wansasueb, K. (2025). A comparison of modern metaheuristics for multi-objective optimization of transonic aeroelasticity in a tow-steered composite wing.
Aerospace, 12(2), 101.
https://doi.org/10.3390/aerospace12020101
[28] Champasak, P., Panagant, N., Pholdee, N., Bureerat, S., & Yildiz, A. (2020). Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle.
Aerospace Science and Technology, 105783.
https://doi.org/10.1016/j.ast.2020.105783
[29] Winyangkul, S., Sleesongsom, S., & Bureerat, S. (2021). Reliability-based design of an aircraft wing using a fuzzy-based metaheuristic.
Applied Sciences, 11(14), 6463.
https://doi.org/10.3390/app11146463
[31] Todorov, V. T., Rakov, D., & Bardenhagen, A. (2024). A morphological analysis of methods for conceptual aircraft design under uncertainties.
Technical University of Berlin, Institute of Aeronautics and Astronautics.
https://doi.org/10.1016/j.ast.2024.
[32] Xue, L., Ma, D., & Wang, X. (2016). Low temperature characteristic analysis and enhancement of hydraulic system on high-altitude and long-endurance unmanned vehicle. In 2016 IEEE International Conference on Aircraft Utility Systems (AUS) (pp. 802–805). IEEE.
[33] Borgest, N., Korovin, M., Gromov, A., & Gromov, A. (2015). The concept of automation in conventional systems creation applied to the preliminary aircraft design. In Soft Computing in Computer and Information Science (pp. 147–156).
[34] Brelje, B. J., & Martins, J. R. (2019). Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches. Progress in Aerospace Sciences, 104, 1–19.
[35] Roskam, J. (1990). What is needed to teach aeronautical engineering students how to design aircraft? In Aircraft Design, Systems and Operations Conference (p. 3257).
[36] Roskam, J., Ackers, D. E., & Gerren, D. S. (1995). Design, analysis and control of large transports so that control of engine thrust can be used as a back-up of the primary flight controls.
[37] Roskam, J. (1985). Airplane design. DARcorporation.
[38] Jorde, K., Schneider, M., & Zöllner, F. (2020). Invited lecture: Analysis of instream habitat quality–preference functions and fuzzy models. In Stochastic Hydraulics 2000 (pp. 671–680). CRC Press.
[39] Ardil, C. (2022). Fighter aircraft selection using fuzzy preference optimization programming (POP). International Journal of Aerospace and Mechanical Engineering, 16(10), 279–290.