Document Type : Original Article

Authors

1 Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi Univers

2 Department of Chemistry Payame Noor University Tehran Iran.

Abstract

Supercapacitors are gaining attention for their high-power density, long lifespan, and rapid charge-discharge capabilities (Especially its use in defense industries and military equipment). The performance of these devices heavily relies on their electrode materials. A nickel-based metal-organic framework (Ni-MOF) with a high specific surface area was synthesized to enhance energy storage. To improve electrical conductivity and capacitive properties, titanium carbide MXene (Ti3C2 MXene) and graphene (Gr) were incorporated into the MOF. This combination was deposited onto nickel foam (NF) via a hydrothermal method, which allowed for better surface area utilization by reducing aggregation between Gr and MXene layers and facilitating electrolyte transport through the conversion of graphene oxide to Gr. The inclusion of Ni-MOF also enhances the quasi-capacitive properties due to its electroactivity. The Ni-MOF/MXene/Gr/NF electrode achieved a specific capacitance of 845 F g⁻¹ in a 3 M KOH electrolyte, while the cathode (graphene aerogel integrated with activated carbon, C-GA/NF) exhibited a capacitance of 373.5 F g⁻¹. For the asymmetric supercapacitor configuration (Ni-MOF/MXene/Gr/NF‖C-GA/NF), a specific capacitance of 637 F g⁻¹, specific energy of 22.8 W h kg⁻¹, and specific power of 0.69 kW kg⁻¹ were recorded. Additionally, the device maintained 55.2% of its initial capacity after 5000 charge-discharge cycles at a current density of 8 A g⁻¹, indicating excellent stability and cycle life. Taken together, these features facilitate the use of this device in military and defense equipment.

Keywords

Main Subjects

[1] Hierarchical 3D electrodes for electrochemical energy storageNat. Rev. Mater., 4 (2019), pp. 45-60
[2].X. Zhang, Q.J. Wang, K.L. Harrison, S.A. Roberts, S.J. HarrisPressure-driven interface evolution in solid-state lithium metal batteries Cell Rep. Phys. Sci., 1 (2020), p. 100012
[3] .Zhang, F.; Xiao, F.; Dong, Z. H.; Shi, W., Synthesis of polypyrrole wrapped graphene hydrogels composites as supercapacitor electrodes. Electrochimica Acta 2013, 114, 125-132.
 [4] D. Larcher and J. M. Tarascon, Nat. Chem., 2015, 7, 19–29.
[5] K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao and J. Chen, Chem Soc. Rev., 2015, 44, 699–728.
 [6] S. Sun, D. Rao, T. Zhai, Q. Liu, H. Huang, B. Liu, H. Zhang, L. Xue and H. Xia, Adv. Mater., 2020, 32, 1–11.
[7] J. Vatamanu, Z. Hu, D. Bedrov, C. Perez and Y. Gogotsi, J. Phys. Chem. Lett., 2013, 4, 2829–2837.
 [8] G. Z. Chen, Int. Mater. Rev., 2017, 62, 173–202.
[9] Y. Wang, Y. Song and Y. Xia, Chem. Soc. Rev., 2016, 45, 5925–5950.
[10] Y. Shabangoli, M. F. El-Kady, M. Nazari, E. Dadashpour, A. Noori, M. S. Rahmanifar, X. Lv, C. Zhang, R. B. Kanerand M. F. Mousavi, Small, 2020, 16, 1–12.
[11] Q. Zhou, G. Li, Y. Zhang, M. Zhu, Y. Wan and Y. Shen, Anal. Chem., 2016, 88, 9830–9836.
[12] Sheberla, D., Bachman, J. C., Elias, J. S., Sun, C. J., Shao-Horn, Y., & Dinca, M. (2017). Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials, 16(2), 220-224.
[13] D. Sheberla, J. C. Bachman, J. S. Elias, C. J. Sun, Y. Shao-Horn and M. Dinca, Nat. Mater., 2017, 16, 220–224.
 [14] P. Du, Y. Dong, C. Liu, W. Wei, D. Liu and P. Liu, J. ColloidInterface Sci., 2018, 518, 57–68.
[15] Supercapacitors for Military Applications: A Review IEEE Transactions on Industrial Electronics. Handbook of Nanocomposite Supercapacitor Materials I, Book Subtitle: Characteristics, ed. by K.K. Kar (eBook ISBN:978-3-030-52359-6, Hardcover ISBN:978-3-030-52358-9)
 
[16] Y. Xu, H. Bai, G. Lu, C. Li and G. Shi, J. Am. Chem. Soc., 2008, 5856–5857
[17] A. Bahaa, J. Balamurugan, N. H. Kim and J. H. Lee, J. Mater. Chem. A, 2019, 7, 8620–8632.
[18] E. Azizi, J. Arjomandi and J. Y. Lee, Electrochim. Acta, 2019, 298, 726–734.
 [19] K. Fic, A. Płatek, J. Piwek, J. Menzel, A. ´Slesi´nski, P. Bujewska, P. Galek and E. Fra˛ckowiak, Energy StorageMater., 2019, 22, 1–14.
 [20] B. D. Ossonon and D. B´elanger, RSC Adv., 2017, 7, 27224–27234.
 [21] P. Kakvand, M. S. Rahmanifar, M. F. El-Kady, A. Pendashteh, M. A. Kiani, M. Hashami, M. Naja, A. Abbasi, M. F. Mousaviand R. B. Kaner, Nanotechnology, 2016, 27, 315401.
[22] C. P´ark´anyi, C. Boniface, J. J. Aaron and M. Maa, Spectrochim. Acta, Part A, 1993, 49, 1715–1725.
[23] M. S. Kumar and S. Dash, Surf. Interfaces, 2018, 12, 1–7.
[24]  F. Behnoudnia and H. Dehghani, Dalton Trans., 2014, 43, 3471–3478.
[25]  J. Tientong, S. Garcia, C. R. Thurber and T. D. Golden, J. Nanotechnol., 2014, 1 1–6.
[26] D. Sheberla, J. C. Bachman, J. S. Elias, C. J. Sun, Y. Shao-Hornand M. Dinca, Nat. Mater., 2017, 16, 220–224.
[27] J. Yang, Z. Ma, W. Gao and M. Wei, Chem.–Eur. J., 2017, 23, 631–636.
 [28] S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. Ren and Y. He, J. Colloid Interface Sci., 2018, 531, 83–90.
[29] C. Cui, J. Wang, Z. Luo, J. Wang, C. Li and Z. Li, Electrochim. Acta, 2018, 273, 327–334.
 [30] Y. Xu, Z. Lin, X. Huang, Y. Wang, Y. Huang and X. Duan, Adv. Mater., 2013, 40, 5828.
[31] B. Song, C. Sizemore, L. Li, X. Huang, Z. Lin, K. S. Moon and C. P. Wong, J. Mater. Chem. A, 2015, 3, 21789–21796.
[32] J. P. Graham, M. A. Rauf, S. Hisaindee and M. Nawaz, J. Mol. Struct., 2013, 1040, 1–8.
 [33] J. Wang, J. Li, Y. Liu, M. Wang and H. Cui, J. Mater. Sci., 2021, 56, 3011–3023.
[34] L. Bin Kong, L. Deng, X. M. Li, M. C. Liu, Y. C. Luo andL. Kang, Mater. Res. Bull., 2012, 47, 1641–1647.
[35] P. Du, Y. Dong, C. Liu, W. Wei, D. Liu and P. Liu, J. ColloidInterface Sci., 2018, 518, 57–68.
[36] M. Shi, M. Cui, L. Kang, T. Li, S. Yun, J. Du, S. Xu and Y. Liu, Appl. Surf. Sci., 2018, 427, 678–686.
[37] Moradi, S. A. H., & Ghobadi, N. (2024). Fabrication of composite GO/NiFe2O4MnFe2O4CoFe2O4 anode material: Toward high
performance hybrid supercapacitors. Microscopy Research and Technique, 87(10), 2459-2474.‏
Naeini, A. H., Moradi, S. A. H., & Mahmoodi, N. M. (2024). Binary metal–organic framework composites as environmentally friendly photocatalysts: Green synthesis and visible light-assisted pollutant degradation. Journal of Photochemistry and Photobiology A: Chemistry457, 115916.
Hosseini Moradi, S. A., & Ghobadi, N. (2024). High-performance nickel oxide–graphene composite as an efficient hybrid supercapacitor. Journal of the Iranian Chemical Society21(6), 1661-1668.